llama_cpp server: add some more information to fields for completions
This commit is contained in:
parent
a5aa6c1478
commit
978b6daf93
1 changed files with 59 additions and 11 deletions
|
@ -71,22 +71,70 @@ model_field = Field(
|
||||||
)
|
)
|
||||||
|
|
||||||
class CreateCompletionRequest(BaseModel):
|
class CreateCompletionRequest(BaseModel):
|
||||||
prompt: Union[str, List[str]]
|
prompt: Union[str, List[str]] = Field(
|
||||||
suffix: Optional[str] = Field(None)
|
default="",
|
||||||
max_tokens: int = 16
|
description="The prompt to generate completions for."
|
||||||
temperature: float = 0.8
|
)
|
||||||
top_p: float = 0.95
|
suffix: Optional[str] = Field(
|
||||||
echo: bool = False
|
default=None,
|
||||||
stop: Optional[List[str]] = []
|
description="A suffix to append to the generated text. If None, no suffix is appended. Useful for chatbots."
|
||||||
stream: bool = False
|
)
|
||||||
logprobs: Optional[int] = Field(None)
|
max_tokens: int = Field(
|
||||||
|
default=16,
|
||||||
|
ge=1,
|
||||||
|
le=2048,
|
||||||
|
description="The maximum number of tokens to generate."
|
||||||
|
)
|
||||||
|
temperature: float = Field(
|
||||||
|
default=0.8,
|
||||||
|
ge=0.0,
|
||||||
|
le=2.0,
|
||||||
|
description="Adjust the randomness of the generated text.\n\n" +
|
||||||
|
"Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run."
|
||||||
|
)
|
||||||
|
top_p: float = Field(
|
||||||
|
default=0.95,
|
||||||
|
ge=0.0,
|
||||||
|
le=1.0,
|
||||||
|
description="Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P.\n\n" +
|
||||||
|
"Top-p sampling, also known as nucleus sampling, is another text generation method that selects the next token from a subset of tokens that together have a cumulative probability of at least p. This method provides a balance between diversity and quality by considering both the probabilities of tokens and the number of tokens to sample from. A higher value for top_p (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text."
|
||||||
|
)
|
||||||
|
echo: bool = Field(
|
||||||
|
default=False,
|
||||||
|
description="Whether to echo the prompt in the generated text. Useful for chatbots."
|
||||||
|
)
|
||||||
|
stop: Optional[List[str]] = Field(
|
||||||
|
default=None,
|
||||||
|
description="A list of tokens at which to stop generation. If None, no stop tokens are used."
|
||||||
|
)
|
||||||
|
stream: bool = Field(
|
||||||
|
default=False,
|
||||||
|
description="Whether to stream the results as they are generated. Useful for chatbots."
|
||||||
|
)
|
||||||
|
logprobs: Optional[int] = Field(
|
||||||
|
default=None,
|
||||||
|
ge=0,
|
||||||
|
description="The number of logprobs to generate. If None, no logprobs are generated."
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# ignored, but marked as required for the sake of compatibility with openai's api
|
# ignored, but marked as required for the sake of compatibility with openai's api
|
||||||
model: str = model_field
|
model: str = model_field
|
||||||
|
|
||||||
# llama.cpp specific parameters
|
# llama.cpp specific parameters
|
||||||
top_k: int = 40
|
top_k: int = Field(
|
||||||
repeat_penalty: float = 1.1
|
default=40,
|
||||||
|
ge=0,
|
||||||
|
description="Limit the next token selection to the K most probable tokens.\n\n" +
|
||||||
|
"Top-k sampling is a text generation method that selects the next token only from the top k most likely tokens predicted by the model. It helps reduce the risk of generating low-probability or nonsensical tokens, but it may also limit the diversity of the output. A higher value for top_k (e.g., 100) will consider more tokens and lead to more diverse text, while a lower value (e.g., 10) will focus on the most probable tokens and generate more conservative text."
|
||||||
|
)
|
||||||
|
repeat_penalty: float = Field(
|
||||||
|
default=1.0,
|
||||||
|
ge=0.0,
|
||||||
|
description="A penalty applied to each token that is already generated. This helps prevent the model from repeating itself.\n\n" +
|
||||||
|
"Repeat penalty is a hyperparameter used to penalize the repetition of token sequences during text generation. It helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient."
|
||||||
|
)
|
||||||
|
|
||||||
class Config:
|
class Config:
|
||||||
schema_extra = {
|
schema_extra = {
|
||||||
|
|
Loading…
Reference in a new issue