Merge branch 'main' of github.com:abetlen/llama_cpp_python into main
This commit is contained in:
commit
8ff83db3ee
9 changed files with 128 additions and 40 deletions
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -164,3 +164,6 @@ cython_debug/
|
|||
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||
.idea/
|
||||
|
||||
# downloaded model .bin files
|
||||
docker/open_llama/*.bin
|
||||
|
|
|
@ -1,46 +1,66 @@
|
|||
# Dockerfiles for building the llama-cpp-python server
|
||||
- `Dockerfile.openblas_simple` - a simple Dockerfile for non-GPU OpenBLAS
|
||||
- `Dockerfile.cuda_simple` - a simple Dockerfile for CUDA accelerated CuBLAS
|
||||
- `hug_model.py` - a Python utility for interactively choosing and downloading the latest `5_1` quantized models from [huggingface.co/TheBloke]( https://huggingface.co/TheBloke)
|
||||
- `Dockerfile` - a single OpenBLAS and CuBLAS combined Dockerfile that automatically installs a previously downloaded model `model.bin`
|
||||
|
||||
# Get model from Hugging Face
|
||||
`python3 ./hug_model.py`
|
||||
# Install Docker Server
|
||||
|
||||
**Note #1:** This was tested with Docker running on Linux. If you can get it working on Windows or MacOS, please update this `README.md` with a PR!
|
||||
|
||||
[Install Docker Engine](https://docs.docker.com/engine/install)
|
||||
|
||||
**Note #2:** NVidia GPU CuBLAS support requires a NVidia GPU with sufficient VRAM (approximately as much as the size in the table below) and Docker NVidia support (see [container-toolkit/install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))
|
||||
|
||||
# Simple Dockerfiles for building the llama-cpp-python server with external model bin files
|
||||
## openblas_simple - a simple Dockerfile for non-GPU OpenBLAS, where the model is located outside the Docker image
|
||||
```
|
||||
cd ./openblas_simple
|
||||
docker build -t openblas_simple .
|
||||
docker run -e USE_MLOCK=0 -e MODEL=/var/model/<model-path> -v <model-root-path>:/var/model -t openblas_simple
|
||||
```
|
||||
where `<model-root-path>/<model-path>` is the full path to the model file on the Docker host system.
|
||||
|
||||
## cuda_simple - a simple Dockerfile for CUDA accelerated CuBLAS, where the model is located outside the Docker image
|
||||
```
|
||||
cd ./cuda_simple
|
||||
docker build -t cuda_simple .
|
||||
docker run -e USE_MLOCK=0 -e MODEL=/var/model/<model-path> -v <model-root-path>:/var/model -t cuda_simple
|
||||
```
|
||||
where `<model-root-path>/<model-path>` is the full path to the model file on the Docker host system.
|
||||
|
||||
# "Open-Llama-in-a-box"
|
||||
## Download an Apache V2.0 licensed 3B paramter Open Llama model and install into a Docker image that runs an OpenBLAS-enabled llama-cpp-python server
|
||||
```
|
||||
$ cd ./open_llama
|
||||
./build.sh
|
||||
./start.sh
|
||||
```
|
||||
|
||||
# Manually choose your own Llama model from Hugging Face
|
||||
`python3 ./hug_model.py -a TheBloke -t llama`
|
||||
You should now have a model in the current directory and `model.bin` symlinked to it for the subsequent Docker build and copy step. e.g.
|
||||
```
|
||||
docker $ ls -lh *.bin
|
||||
-rw-rw-r-- 1 user user 4.8G May 23 18:30 <downloaded-model-file>.q5_1.bin
|
||||
lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> <downloaded-model-file>.q5_1.bin
|
||||
-rw-rw-r-- 1 user user 4.8G May 23 18:30 <downloaded-model-file>q5_1.bin
|
||||
lrwxrwxrwx 1 user user 24 May 23 18:30 model.bin -> <downloaded-model-file>q5_1.bin
|
||||
```
|
||||
**Note #1:** Make sure you have enough disk space to download the model. As the model is then copied into the image you will need at least
|
||||
**TWICE** as much disk space as the size of the model:
|
||||
|
||||
| Model | Quantized size |
|
||||
|------:|----------------:|
|
||||
| 3B | 3 GB |
|
||||
| 7B | 5 GB |
|
||||
| 13B | 10 GB |
|
||||
| 30B | 25 GB |
|
||||
| 33B | 25 GB |
|
||||
| 65B | 50 GB |
|
||||
|
||||
**Note #2:** If you want to pass or tune additional parameters, customise `./start_server.sh` before running `docker build ...`
|
||||
|
||||
# Install Docker Server
|
||||
|
||||
**Note #3:** This was tested with Docker running on Linux. If you can get it working on Windows or MacOS, please update this `README.md` with a PR!
|
||||
|
||||
[Install Docker Engine](https://docs.docker.com/engine/install)
|
||||
|
||||
# Use OpenBLAS
|
||||
## Use OpenBLAS
|
||||
Use if you don't have a NVidia GPU. Defaults to `python:3-slim-bullseye` Docker base image and OpenBLAS:
|
||||
## Build:
|
||||
`docker build --build-arg -t openblas .`
|
||||
## Run:
|
||||
### Build:
|
||||
`docker build -t openblas .`
|
||||
### Run:
|
||||
`docker run --cap-add SYS_RESOURCE -t openblas`
|
||||
|
||||
# Use CuBLAS
|
||||
Requires a NVidia GPU with sufficient VRAM (approximately as much as the size above) and Docker NVidia support (see [container-toolkit/install-guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))
|
||||
## Build:
|
||||
## Use CuBLAS
|
||||
### Build:
|
||||
`docker build --build-arg IMAGE=nvidia/cuda:12.1.1-devel-ubuntu22.04 -t cublas .`
|
||||
## Run:
|
||||
### Run:
|
||||
`docker run --cap-add SYS_RESOURCE -t cublas`
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04"
|
||||
FROM ${CUDA_IMAGE}
|
||||
FROM nvidia/cuda:${CUDA_IMAGE}
|
||||
|
||||
# We need to set the host to 0.0.0.0 to allow outside access
|
||||
ENV HOST 0.0.0.0
|
||||
|
@ -10,7 +10,7 @@ COPY . .
|
|||
RUN apt update && apt install -y python3 python3-pip
|
||||
RUN python3 -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette
|
||||
|
||||
RUN LLAMA_CUBLAS=1 python3 setup.py develop
|
||||
RUN LLAMA_CUBLAS=1 pip install llama-cpp-python
|
||||
|
||||
# Run the server
|
||||
CMD python3 -m llama_cpp.server
|
14
docker/open_llama/build.sh
Executable file
14
docker/open_llama/build.sh
Executable file
|
@ -0,0 +1,14 @@
|
|||
#!/bin/sh
|
||||
|
||||
MODEL="open_llama_3b"
|
||||
# Get open_llama_3b_ggml q5_1 quantization
|
||||
python3 ./hug_model.py -a SlyEcho -s ${MODEL} -f "q5_1"
|
||||
ls -lh *.bin
|
||||
|
||||
# Build the default OpenBLAS image
|
||||
docker build -t $MODEL .
|
||||
docker images | egrep "^(REPOSITORY|$MODEL)"
|
||||
|
||||
echo
|
||||
echo "To start the docker container run:"
|
||||
echo "docker run -t -p 8000:8000 $MODEL"
|
|
@ -2,6 +2,7 @@ import requests
|
|||
import json
|
||||
import os
|
||||
import struct
|
||||
import argparse
|
||||
|
||||
def make_request(url, params=None):
|
||||
print(f"Making request to {url}...")
|
||||
|
@ -69,21 +70,30 @@ def get_user_choice(model_list):
|
|||
|
||||
return None
|
||||
|
||||
import argparse
|
||||
|
||||
def main():
|
||||
# Create an argument parser
|
||||
parser = argparse.ArgumentParser(description='Process the model version.')
|
||||
parser = argparse.ArgumentParser(description='Process some parameters.')
|
||||
|
||||
# Arguments
|
||||
parser.add_argument('-v', '--version', type=int, default=0x0003,
|
||||
help='an integer for the version to be used')
|
||||
help='hexadecimal version number of ggml file')
|
||||
parser.add_argument('-a', '--author', type=str, default='TheBloke',
|
||||
help='HuggingFace author filter')
|
||||
parser.add_argument('-t', '--tag', type=str, default='llama',
|
||||
help='HuggingFace tag filter')
|
||||
parser.add_argument('-s', '--search', type=str, default='',
|
||||
help='HuggingFace search filter')
|
||||
parser.add_argument('-f', '--filename', type=str, default='q5_1',
|
||||
help='HuggingFace model repository filename substring match')
|
||||
|
||||
# Parse the arguments
|
||||
args = parser.parse_args()
|
||||
|
||||
# Define the parameters
|
||||
params = {
|
||||
"author": "TheBloke", # Filter by author
|
||||
"tags": "llama"
|
||||
"author": args.author,
|
||||
"tags": args.tag,
|
||||
"search": args.search
|
||||
}
|
||||
|
||||
models = make_request('https://huggingface.co/api/models', params=params)
|
||||
|
@ -100,17 +110,30 @@ def main():
|
|||
|
||||
for sibling in model_info.get('siblings', []):
|
||||
rfilename = sibling.get('rfilename')
|
||||
if rfilename and 'q5_1' in rfilename:
|
||||
if rfilename and args.filename in rfilename:
|
||||
model_list.append((model_id, rfilename))
|
||||
|
||||
model_choice = get_user_choice(model_list)
|
||||
# Choose the model
|
||||
model_list.sort(key=lambda x: x[0])
|
||||
if len(model_list) == 0:
|
||||
print("No models found")
|
||||
exit(1)
|
||||
elif len(model_list) == 1:
|
||||
model_choice = model_list[0]
|
||||
else:
|
||||
model_choice = get_user_choice(model_list)
|
||||
|
||||
if model_choice is not None:
|
||||
model_id, rfilename = model_choice
|
||||
url = f"https://huggingface.co/{model_id}/resolve/main/{rfilename}"
|
||||
download_file(url, rfilename)
|
||||
_, version = check_magic_and_version(rfilename)
|
||||
dest = f"{model_id.replace('/', '_')}_{rfilename}"
|
||||
download_file(url, dest)
|
||||
_, version = check_magic_and_version(dest)
|
||||
if version != args.version:
|
||||
print(f"Warning: Expected version {args.version}, but found different version in the file.")
|
||||
print(f"Warning: Expected version {args.version}, but found different version in the file.")
|
||||
else:
|
||||
print("Error - model choice was None")
|
||||
exit(2)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
28
docker/open_llama/start.sh
Executable file
28
docker/open_llama/start.sh
Executable file
|
@ -0,0 +1,28 @@
|
|||
#!/bin/sh
|
||||
|
||||
MODEL="open_llama_3b"
|
||||
|
||||
# Start Docker container
|
||||
docker run --cap-add SYS_RESOURCE -p 8000:8000 -t $MODEL &
|
||||
sleep 10
|
||||
echo
|
||||
docker ps | egrep "(^CONTAINER|$MODEL)"
|
||||
|
||||
# Test the model works
|
||||
echo
|
||||
curl -X 'POST' 'http://localhost:8000/v1/completions' -H 'accept: application/json' -H 'Content-Type: application/json' -d '{
|
||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||
"stop": [
|
||||
"\n",
|
||||
"###"
|
||||
]
|
||||
}' | grep Paris
|
||||
if [ $? -eq 0 ]
|
||||
then
|
||||
echo
|
||||
echo "$MODEL is working!!"
|
||||
else
|
||||
echo
|
||||
echo "ERROR: $MODEL not replying."
|
||||
exit 1
|
||||
fi
|
|
@ -1,6 +1,6 @@
|
|||
#!/bin/sh
|
||||
|
||||
# For mmap support
|
||||
# For mlock support
|
||||
ulimit -l unlimited
|
||||
|
||||
if [ "$IMAGE" = "python:3-slim-bullseye" ]; then
|
|
@ -9,7 +9,7 @@ COPY . .
|
|||
RUN apt update && apt install -y libopenblas-dev ninja-build build-essential
|
||||
RUN python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette
|
||||
|
||||
RUN LLAMA_OPENBLAS=1 python3 setup.py develop
|
||||
RUN LLAMA_OPENBLAS=1 pip install llama_cpp_python --verbose
|
||||
|
||||
# Run the server
|
||||
CMD python3 -m llama_cpp.server
|
Loading…
Reference in a new issue