Merge pull request #125 from Stonelinks/app-server-module-importable
Make app server module importable
This commit is contained in:
commit
79ba9ed98d
6 changed files with 401 additions and 270 deletions
0
llama_cpp/server/__init__.py
Normal file
0
llama_cpp/server/__init__.py
Normal file
|
@ -5,283 +5,29 @@ To run this example:
|
||||||
```bash
|
```bash
|
||||||
pip install fastapi uvicorn sse-starlette
|
pip install fastapi uvicorn sse-starlette
|
||||||
export MODEL=../models/7B/...
|
export MODEL=../models/7B/...
|
||||||
uvicorn fastapi_server_chat:app --reload
|
```
|
||||||
|
|
||||||
|
Then run:
|
||||||
|
```
|
||||||
|
uvicorn llama_cpp.server.app:app --reload
|
||||||
|
```
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
```
|
||||||
|
python3 -m llama_cpp.server
|
||||||
```
|
```
|
||||||
|
|
||||||
Then visit http://localhost:8000/docs to see the interactive API docs.
|
Then visit http://localhost:8000/docs to see the interactive API docs.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
import os
|
import os
|
||||||
import json
|
import uvicorn
|
||||||
from threading import Lock
|
|
||||||
from typing import List, Optional, Literal, Union, Iterator, Dict
|
|
||||||
from typing_extensions import TypedDict
|
|
||||||
|
|
||||||
import llama_cpp
|
|
||||||
|
|
||||||
from fastapi import Depends, FastAPI
|
|
||||||
from fastapi.middleware.cors import CORSMiddleware
|
|
||||||
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
|
|
||||||
from sse_starlette.sse import EventSourceResponse
|
|
||||||
|
|
||||||
|
|
||||||
class Settings(BaseSettings):
|
|
||||||
model: str
|
|
||||||
n_ctx: int = 2048
|
|
||||||
n_batch: int = 512
|
|
||||||
n_threads: int = max((os.cpu_count() or 2) // 2, 1)
|
|
||||||
f16_kv: bool = True
|
|
||||||
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
|
|
||||||
use_mmap: bool = True
|
|
||||||
embedding: bool = True
|
|
||||||
last_n_tokens_size: int = 64
|
|
||||||
logits_all: bool = False
|
|
||||||
cache: bool = False # WARNING: This is an experimental feature
|
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI(
|
|
||||||
title="🦙 llama.cpp Python API",
|
|
||||||
version="0.0.1",
|
|
||||||
)
|
|
||||||
app.add_middleware(
|
|
||||||
CORSMiddleware,
|
|
||||||
allow_origins=["*"],
|
|
||||||
allow_credentials=True,
|
|
||||||
allow_methods=["*"],
|
|
||||||
allow_headers=["*"],
|
|
||||||
)
|
|
||||||
settings = Settings()
|
|
||||||
llama = llama_cpp.Llama(
|
|
||||||
settings.model,
|
|
||||||
f16_kv=settings.f16_kv,
|
|
||||||
use_mlock=settings.use_mlock,
|
|
||||||
use_mmap=settings.use_mmap,
|
|
||||||
embedding=settings.embedding,
|
|
||||||
logits_all=settings.logits_all,
|
|
||||||
n_threads=settings.n_threads,
|
|
||||||
n_batch=settings.n_batch,
|
|
||||||
n_ctx=settings.n_ctx,
|
|
||||||
last_n_tokens_size=settings.last_n_tokens_size,
|
|
||||||
)
|
|
||||||
if settings.cache:
|
|
||||||
cache = llama_cpp.LlamaCache()
|
|
||||||
llama.set_cache(cache)
|
|
||||||
llama_lock = Lock()
|
|
||||||
|
|
||||||
|
|
||||||
def get_llama():
|
|
||||||
with llama_lock:
|
|
||||||
yield llama
|
|
||||||
|
|
||||||
|
|
||||||
class CreateCompletionRequest(BaseModel):
|
|
||||||
prompt: Union[str, List[str]]
|
|
||||||
suffix: Optional[str] = Field(None)
|
|
||||||
max_tokens: int = 16
|
|
||||||
temperature: float = 0.8
|
|
||||||
top_p: float = 0.95
|
|
||||||
echo: bool = False
|
|
||||||
stop: Optional[List[str]] = []
|
|
||||||
stream: bool = False
|
|
||||||
|
|
||||||
# ignored or currently unsupported
|
|
||||||
model: Optional[str] = Field(None)
|
|
||||||
n: Optional[int] = 1
|
|
||||||
logprobs: Optional[int] = Field(None)
|
|
||||||
presence_penalty: Optional[float] = 0
|
|
||||||
frequency_penalty: Optional[float] = 0
|
|
||||||
best_of: Optional[int] = 1
|
|
||||||
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
||||||
user: Optional[str] = Field(None)
|
|
||||||
|
|
||||||
# llama.cpp specific parameters
|
|
||||||
top_k: int = 40
|
|
||||||
repeat_penalty: float = 1.1
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
schema_extra = {
|
|
||||||
"example": {
|
|
||||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
|
||||||
"stop": ["\n", "###"],
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
|
||||||
|
|
||||||
|
|
||||||
@app.post(
|
|
||||||
"/v1/completions",
|
|
||||||
response_model=CreateCompletionResponse,
|
|
||||||
)
|
|
||||||
def create_completion(
|
|
||||||
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
|
||||||
):
|
|
||||||
if isinstance(request.prompt, list):
|
|
||||||
request.prompt = "".join(request.prompt)
|
|
||||||
|
|
||||||
completion_or_chunks = llama(
|
|
||||||
**request.dict(
|
|
||||||
exclude={
|
|
||||||
"model",
|
|
||||||
"n",
|
|
||||||
"frequency_penalty",
|
|
||||||
"presence_penalty",
|
|
||||||
"best_of",
|
|
||||||
"logit_bias",
|
|
||||||
"user",
|
|
||||||
}
|
|
||||||
)
|
|
||||||
)
|
|
||||||
if request.stream:
|
|
||||||
chunks: Iterator[llama_cpp.CompletionChunk] = completion_or_chunks # type: ignore
|
|
||||||
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
|
|
||||||
completion: llama_cpp.Completion = completion_or_chunks # type: ignore
|
|
||||||
return completion
|
|
||||||
|
|
||||||
|
|
||||||
class CreateEmbeddingRequest(BaseModel):
|
|
||||||
model: Optional[str]
|
|
||||||
input: str
|
|
||||||
user: Optional[str]
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
schema_extra = {
|
|
||||||
"example": {
|
|
||||||
"input": "The food was delicious and the waiter...",
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
|
|
||||||
|
|
||||||
|
|
||||||
@app.post(
|
|
||||||
"/v1/embeddings",
|
|
||||||
response_model=CreateEmbeddingResponse,
|
|
||||||
)
|
|
||||||
def create_embedding(
|
|
||||||
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
|
||||||
):
|
|
||||||
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
|
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionRequestMessage(BaseModel):
|
|
||||||
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
|
|
||||||
content: str
|
|
||||||
user: Optional[str] = None
|
|
||||||
|
|
||||||
|
|
||||||
class CreateChatCompletionRequest(BaseModel):
|
|
||||||
model: Optional[str]
|
|
||||||
messages: List[ChatCompletionRequestMessage]
|
|
||||||
temperature: float = 0.8
|
|
||||||
top_p: float = 0.95
|
|
||||||
stream: bool = False
|
|
||||||
stop: Optional[List[str]] = []
|
|
||||||
max_tokens: int = 128
|
|
||||||
|
|
||||||
# ignored or currently unsupported
|
|
||||||
model: Optional[str] = Field(None)
|
|
||||||
n: Optional[int] = 1
|
|
||||||
presence_penalty: Optional[float] = 0
|
|
||||||
frequency_penalty: Optional[float] = 0
|
|
||||||
logit_bias: Optional[Dict[str, float]] = Field(None)
|
|
||||||
user: Optional[str] = Field(None)
|
|
||||||
|
|
||||||
# llama.cpp specific parameters
|
|
||||||
repeat_penalty: float = 1.1
|
|
||||||
|
|
||||||
class Config:
|
|
||||||
schema_extra = {
|
|
||||||
"example": {
|
|
||||||
"messages": [
|
|
||||||
ChatCompletionRequestMessage(
|
|
||||||
role="system", content="You are a helpful assistant."
|
|
||||||
),
|
|
||||||
ChatCompletionRequestMessage(
|
|
||||||
role="user", content="What is the capital of France?"
|
|
||||||
),
|
|
||||||
]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
|
|
||||||
|
|
||||||
|
|
||||||
@app.post(
|
|
||||||
"/v1/chat/completions",
|
|
||||||
response_model=CreateChatCompletionResponse,
|
|
||||||
)
|
|
||||||
def create_chat_completion(
|
|
||||||
request: CreateChatCompletionRequest,
|
|
||||||
llama: llama_cpp.Llama = Depends(get_llama),
|
|
||||||
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
|
|
||||||
completion_or_chunks = llama.create_chat_completion(
|
|
||||||
**request.dict(
|
|
||||||
exclude={
|
|
||||||
"model",
|
|
||||||
"n",
|
|
||||||
"presence_penalty",
|
|
||||||
"frequency_penalty",
|
|
||||||
"logit_bias",
|
|
||||||
"user",
|
|
||||||
}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
if request.stream:
|
|
||||||
|
|
||||||
async def server_sent_events(
|
|
||||||
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
|
|
||||||
):
|
|
||||||
for chat_chunk in chat_chunks:
|
|
||||||
yield dict(data=json.dumps(chat_chunk))
|
|
||||||
yield dict(data="[DONE]")
|
|
||||||
|
|
||||||
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
|
|
||||||
|
|
||||||
return EventSourceResponse(
|
|
||||||
server_sent_events(chunks),
|
|
||||||
)
|
|
||||||
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
|
|
||||||
return completion
|
|
||||||
|
|
||||||
|
|
||||||
class ModelData(TypedDict):
|
|
||||||
id: str
|
|
||||||
object: Literal["model"]
|
|
||||||
owned_by: str
|
|
||||||
permissions: List[str]
|
|
||||||
|
|
||||||
|
|
||||||
class ModelList(TypedDict):
|
|
||||||
object: Literal["list"]
|
|
||||||
data: List[ModelData]
|
|
||||||
|
|
||||||
|
|
||||||
GetModelResponse = create_model_from_typeddict(ModelList)
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/v1/models", response_model=GetModelResponse)
|
|
||||||
def get_models() -> ModelList:
|
|
||||||
return {
|
|
||||||
"object": "list",
|
|
||||||
"data": [
|
|
||||||
{
|
|
||||||
"id": llama.model_path,
|
|
||||||
"object": "model",
|
|
||||||
"owned_by": "me",
|
|
||||||
"permissions": [],
|
|
||||||
}
|
|
||||||
],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
from llama_cpp.server.app import app, init_llama
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import os
|
init_llama()
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
uvicorn.run(
|
uvicorn.run(
|
||||||
app, host=os.getenv("HOST", "localhost"), port=int(os.getenv("PORT", 8000))
|
app, host=os.getenv("HOST", "localhost"), port=int(os.getenv("PORT", 8000))
|
||||||
|
|
271
llama_cpp/server/app.py
Normal file
271
llama_cpp/server/app.py
Normal file
|
@ -0,0 +1,271 @@
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
from threading import Lock
|
||||||
|
from typing import List, Optional, Literal, Union, Iterator, Dict
|
||||||
|
from typing_extensions import TypedDict
|
||||||
|
|
||||||
|
import llama_cpp
|
||||||
|
|
||||||
|
from fastapi import Depends, FastAPI
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
|
||||||
|
from sse_starlette.sse import EventSourceResponse
|
||||||
|
|
||||||
|
|
||||||
|
class Settings(BaseSettings):
|
||||||
|
model: str = os.environ.get("MODEL", "null")
|
||||||
|
n_ctx: int = 2048
|
||||||
|
n_batch: int = 512
|
||||||
|
n_threads: int = max((os.cpu_count() or 2) // 2, 1)
|
||||||
|
f16_kv: bool = True
|
||||||
|
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
|
||||||
|
use_mmap: bool = True
|
||||||
|
embedding: bool = True
|
||||||
|
last_n_tokens_size: int = 64
|
||||||
|
logits_all: bool = False
|
||||||
|
cache: bool = False # WARNING: This is an experimental feature
|
||||||
|
vocab_only: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
app = FastAPI(
|
||||||
|
title="🦙 llama.cpp Python API",
|
||||||
|
version="0.0.1",
|
||||||
|
)
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
llama: llama_cpp.Llama = None
|
||||||
|
def init_llama(settings: Settings = None):
|
||||||
|
if settings is None:
|
||||||
|
settings = Settings()
|
||||||
|
global llama
|
||||||
|
llama = llama_cpp.Llama(
|
||||||
|
settings.model,
|
||||||
|
f16_kv=settings.f16_kv,
|
||||||
|
use_mlock=settings.use_mlock,
|
||||||
|
use_mmap=settings.use_mmap,
|
||||||
|
embedding=settings.embedding,
|
||||||
|
logits_all=settings.logits_all,
|
||||||
|
n_threads=settings.n_threads,
|
||||||
|
n_batch=settings.n_batch,
|
||||||
|
n_ctx=settings.n_ctx,
|
||||||
|
last_n_tokens_size=settings.last_n_tokens_size,
|
||||||
|
vocab_only=settings.vocab_only,
|
||||||
|
)
|
||||||
|
if settings.cache:
|
||||||
|
cache = llama_cpp.LlamaCache()
|
||||||
|
llama.set_cache(cache)
|
||||||
|
|
||||||
|
llama_lock = Lock()
|
||||||
|
def get_llama():
|
||||||
|
with llama_lock:
|
||||||
|
yield llama
|
||||||
|
|
||||||
|
class CreateCompletionRequest(BaseModel):
|
||||||
|
prompt: Union[str, List[str]]
|
||||||
|
suffix: Optional[str] = Field(None)
|
||||||
|
max_tokens: int = 16
|
||||||
|
temperature: float = 0.8
|
||||||
|
top_p: float = 0.95
|
||||||
|
echo: bool = False
|
||||||
|
stop: Optional[List[str]] = []
|
||||||
|
stream: bool = False
|
||||||
|
|
||||||
|
# ignored or currently unsupported
|
||||||
|
model: Optional[str] = Field(None)
|
||||||
|
n: Optional[int] = 1
|
||||||
|
logprobs: Optional[int] = Field(None)
|
||||||
|
presence_penalty: Optional[float] = 0
|
||||||
|
frequency_penalty: Optional[float] = 0
|
||||||
|
best_of: Optional[int] = 1
|
||||||
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
||||||
|
user: Optional[str] = Field(None)
|
||||||
|
|
||||||
|
# llama.cpp specific parameters
|
||||||
|
top_k: int = 40
|
||||||
|
repeat_penalty: float = 1.1
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
schema_extra = {
|
||||||
|
"example": {
|
||||||
|
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||||
|
"stop": ["\n", "###"],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post(
|
||||||
|
"/v1/completions",
|
||||||
|
response_model=CreateCompletionResponse,
|
||||||
|
)
|
||||||
|
def create_completion(
|
||||||
|
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
||||||
|
):
|
||||||
|
if isinstance(request.prompt, list):
|
||||||
|
request.prompt = "".join(request.prompt)
|
||||||
|
|
||||||
|
completion_or_chunks = llama(
|
||||||
|
**request.dict(
|
||||||
|
exclude={
|
||||||
|
"model",
|
||||||
|
"n",
|
||||||
|
"frequency_penalty",
|
||||||
|
"presence_penalty",
|
||||||
|
"best_of",
|
||||||
|
"logit_bias",
|
||||||
|
"user",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if request.stream:
|
||||||
|
chunks: Iterator[llama_cpp.CompletionChunk] = completion_or_chunks # type: ignore
|
||||||
|
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
|
||||||
|
completion: llama_cpp.Completion = completion_or_chunks # type: ignore
|
||||||
|
return completion
|
||||||
|
|
||||||
|
|
||||||
|
class CreateEmbeddingRequest(BaseModel):
|
||||||
|
model: Optional[str]
|
||||||
|
input: str
|
||||||
|
user: Optional[str]
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
schema_extra = {
|
||||||
|
"example": {
|
||||||
|
"input": "The food was delicious and the waiter...",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post(
|
||||||
|
"/v1/embeddings",
|
||||||
|
response_model=CreateEmbeddingResponse,
|
||||||
|
)
|
||||||
|
def create_embedding(
|
||||||
|
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
||||||
|
):
|
||||||
|
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
|
||||||
|
|
||||||
|
|
||||||
|
class ChatCompletionRequestMessage(BaseModel):
|
||||||
|
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
|
||||||
|
content: str
|
||||||
|
user: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class CreateChatCompletionRequest(BaseModel):
|
||||||
|
model: Optional[str]
|
||||||
|
messages: List[ChatCompletionRequestMessage]
|
||||||
|
temperature: float = 0.8
|
||||||
|
top_p: float = 0.95
|
||||||
|
stream: bool = False
|
||||||
|
stop: Optional[List[str]] = []
|
||||||
|
max_tokens: int = 128
|
||||||
|
|
||||||
|
# ignored or currently unsupported
|
||||||
|
model: Optional[str] = Field(None)
|
||||||
|
n: Optional[int] = 1
|
||||||
|
presence_penalty: Optional[float] = 0
|
||||||
|
frequency_penalty: Optional[float] = 0
|
||||||
|
logit_bias: Optional[Dict[str, float]] = Field(None)
|
||||||
|
user: Optional[str] = Field(None)
|
||||||
|
|
||||||
|
# llama.cpp specific parameters
|
||||||
|
repeat_penalty: float = 1.1
|
||||||
|
|
||||||
|
class Config:
|
||||||
|
schema_extra = {
|
||||||
|
"example": {
|
||||||
|
"messages": [
|
||||||
|
ChatCompletionRequestMessage(
|
||||||
|
role="system", content="You are a helpful assistant."
|
||||||
|
),
|
||||||
|
ChatCompletionRequestMessage(
|
||||||
|
role="user", content="What is the capital of France?"
|
||||||
|
),
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post(
|
||||||
|
"/v1/chat/completions",
|
||||||
|
response_model=CreateChatCompletionResponse,
|
||||||
|
)
|
||||||
|
def create_chat_completion(
|
||||||
|
request: CreateChatCompletionRequest,
|
||||||
|
llama: llama_cpp.Llama = Depends(get_llama),
|
||||||
|
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
|
||||||
|
completion_or_chunks = llama.create_chat_completion(
|
||||||
|
**request.dict(
|
||||||
|
exclude={
|
||||||
|
"model",
|
||||||
|
"n",
|
||||||
|
"presence_penalty",
|
||||||
|
"frequency_penalty",
|
||||||
|
"logit_bias",
|
||||||
|
"user",
|
||||||
|
}
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
if request.stream:
|
||||||
|
|
||||||
|
async def server_sent_events(
|
||||||
|
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
|
||||||
|
):
|
||||||
|
for chat_chunk in chat_chunks:
|
||||||
|
yield dict(data=json.dumps(chat_chunk))
|
||||||
|
yield dict(data="[DONE]")
|
||||||
|
|
||||||
|
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
|
||||||
|
|
||||||
|
return EventSourceResponse(
|
||||||
|
server_sent_events(chunks),
|
||||||
|
)
|
||||||
|
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
|
||||||
|
return completion
|
||||||
|
|
||||||
|
|
||||||
|
class ModelData(TypedDict):
|
||||||
|
id: str
|
||||||
|
object: Literal["model"]
|
||||||
|
owned_by: str
|
||||||
|
permissions: List[str]
|
||||||
|
|
||||||
|
|
||||||
|
class ModelList(TypedDict):
|
||||||
|
object: Literal["list"]
|
||||||
|
data: List[ModelData]
|
||||||
|
|
||||||
|
|
||||||
|
GetModelResponse = create_model_from_typeddict(ModelList)
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/v1/models", response_model=GetModelResponse)
|
||||||
|
def get_models() -> ModelList:
|
||||||
|
return {
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"id": llama.model_path,
|
||||||
|
"object": "model",
|
||||||
|
"owned_by": "me",
|
||||||
|
"permissions": [],
|
||||||
|
}
|
||||||
|
],
|
||||||
|
}
|
95
poetry.lock
generated
95
poetry.lock
generated
|
@ -1,4 +1,25 @@
|
||||||
# This file is automatically @generated by Poetry 1.4.1 and should not be changed by hand.
|
# This file is automatically @generated by Poetry 1.4.2 and should not be changed by hand.
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "anyio"
|
||||||
|
version = "3.6.2"
|
||||||
|
description = "High level compatibility layer for multiple asynchronous event loop implementations"
|
||||||
|
category = "dev"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.6.2"
|
||||||
|
files = [
|
||||||
|
{file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"},
|
||||||
|
{file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
idna = ">=2.8"
|
||||||
|
sniffio = ">=1.1"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
doc = ["packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"]
|
||||||
|
test = ["contextlib2", "coverage[toml] (>=4.5)", "hypothesis (>=4.0)", "mock (>=4)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (<0.15)", "uvloop (>=0.15)"]
|
||||||
|
trio = ["trio (>=0.16,<0.22)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "attrs"
|
name = "attrs"
|
||||||
|
@ -398,6 +419,64 @@ colorama = ">=0.4"
|
||||||
[package.extras]
|
[package.extras]
|
||||||
async = ["aiofiles (>=0.7,<1.0)"]
|
async = ["aiofiles (>=0.7,<1.0)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "h11"
|
||||||
|
version = "0.14.0"
|
||||||
|
description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1"
|
||||||
|
category = "dev"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.7"
|
||||||
|
files = [
|
||||||
|
{file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"},
|
||||||
|
{file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "httpcore"
|
||||||
|
version = "0.17.0"
|
||||||
|
description = "A minimal low-level HTTP client."
|
||||||
|
category = "dev"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.7"
|
||||||
|
files = [
|
||||||
|
{file = "httpcore-0.17.0-py3-none-any.whl", hash = "sha256:0fdfea45e94f0c9fd96eab9286077f9ff788dd186635ae61b312693e4d943599"},
|
||||||
|
{file = "httpcore-0.17.0.tar.gz", hash = "sha256:cc045a3241afbf60ce056202301b4d8b6af08845e3294055eb26b09913ef903c"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
anyio = ">=3.0,<5.0"
|
||||||
|
certifi = "*"
|
||||||
|
h11 = ">=0.13,<0.15"
|
||||||
|
sniffio = ">=1.0.0,<2.0.0"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
http2 = ["h2 (>=3,<5)"]
|
||||||
|
socks = ["socksio (>=1.0.0,<2.0.0)"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "httpx"
|
||||||
|
version = "0.24.0"
|
||||||
|
description = "The next generation HTTP client."
|
||||||
|
category = "dev"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.7"
|
||||||
|
files = [
|
||||||
|
{file = "httpx-0.24.0-py3-none-any.whl", hash = "sha256:447556b50c1921c351ea54b4fe79d91b724ed2b027462ab9a329465d147d5a4e"},
|
||||||
|
{file = "httpx-0.24.0.tar.gz", hash = "sha256:507d676fc3e26110d41df7d35ebd8b3b8585052450f4097401c9be59d928c63e"},
|
||||||
|
]
|
||||||
|
|
||||||
|
[package.dependencies]
|
||||||
|
certifi = "*"
|
||||||
|
httpcore = ">=0.15.0,<0.18.0"
|
||||||
|
idna = "*"
|
||||||
|
sniffio = "*"
|
||||||
|
|
||||||
|
[package.extras]
|
||||||
|
brotli = ["brotli", "brotlicffi"]
|
||||||
|
cli = ["click (>=8.0.0,<9.0.0)", "pygments (>=2.0.0,<3.0.0)", "rich (>=10,<14)"]
|
||||||
|
http2 = ["h2 (>=3,<5)"]
|
||||||
|
socks = ["socksio (>=1.0.0,<2.0.0)"]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "idna"
|
name = "idna"
|
||||||
version = "3.4"
|
version = "3.4"
|
||||||
|
@ -1232,6 +1311,18 @@ files = [
|
||||||
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
{file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "sniffio"
|
||||||
|
version = "1.3.0"
|
||||||
|
description = "Sniff out which async library your code is running under"
|
||||||
|
category = "dev"
|
||||||
|
optional = false
|
||||||
|
python-versions = ">=3.7"
|
||||||
|
files = [
|
||||||
|
{file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"},
|
||||||
|
{file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"},
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "tomli"
|
name = "tomli"
|
||||||
version = "2.0.1"
|
version = "2.0.1"
|
||||||
|
@ -1367,4 +1458,4 @@ testing = ["big-O", "flake8 (<5)", "jaraco.functools", "jaraco.itertools", "more
|
||||||
[metadata]
|
[metadata]
|
||||||
lock-version = "2.0"
|
lock-version = "2.0"
|
||||||
python-versions = "^3.8.1"
|
python-versions = "^3.8.1"
|
||||||
content-hash = "cc9babcdfdc3679a4d84f68912408a005619a576947b059146ed1b428850ece9"
|
content-hash = "aa15e57300668bd23c051b4cd87bec4c1a58dcccd2f2b4767579fea7f2c5fa41"
|
||||||
|
|
|
@ -24,6 +24,7 @@ mkdocs = "^1.4.2"
|
||||||
mkdocstrings = {extras = ["python"], version = "^0.20.0"}
|
mkdocstrings = {extras = ["python"], version = "^0.20.0"}
|
||||||
mkdocs-material = "^9.1.4"
|
mkdocs-material = "^9.1.4"
|
||||||
pytest = "^7.2.2"
|
pytest = "^7.2.2"
|
||||||
|
httpx = "^0.24.0"
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = [
|
requires = [
|
||||||
|
|
|
@ -128,3 +128,25 @@ def test_utf8(monkeypatch):
|
||||||
n = 0 # reset
|
n = 0 # reset
|
||||||
completion = llama.create_completion("", max_tokens=1)
|
completion = llama.create_completion("", max_tokens=1)
|
||||||
assert completion["choices"][0]["text"] == ""
|
assert completion["choices"][0]["text"] == ""
|
||||||
|
|
||||||
|
|
||||||
|
def test_llama_server():
|
||||||
|
from fastapi.testclient import TestClient
|
||||||
|
from llama_cpp.server.app import app, init_llama, Settings
|
||||||
|
s = Settings()
|
||||||
|
s.model = MODEL
|
||||||
|
s.vocab_only = True
|
||||||
|
init_llama(s)
|
||||||
|
client = TestClient(app)
|
||||||
|
response = client.get("/v1/models")
|
||||||
|
assert response.json() == {
|
||||||
|
"object": "list",
|
||||||
|
"data": [
|
||||||
|
{
|
||||||
|
"id": MODEL,
|
||||||
|
"object": "model",
|
||||||
|
"owned_by": "me",
|
||||||
|
"permissions": [],
|
||||||
|
}
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
Loading…
Add table
Reference in a new issue