bug fixing (#925)

This commit is contained in:
zocainViken 2023-11-20 18:31:52 +01:00 committed by GitHub
parent f3117c0cf6
commit 6dde6bd09c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 86 additions and 8 deletions

View file

@ -11,20 +11,34 @@ MODEL_PATH = os.environ.get('MODEL', "../models/7B/ggml-model.bin")
prompt = b"\n\n### Instruction:\nWhat is the capital of France?\n\n### Response:\n" prompt = b"\n\n### Instruction:\nWhat is the capital of France?\n\n### Response:\n"
lparams = llama_cpp.llama_context_default_params() lparams = llama_cpp.llama_model_default_params()
cparams = llama_cpp.llama_context_default_params()
model = llama_cpp.llama_load_model_from_file(MODEL_PATH.encode('utf-8'), lparams) model = llama_cpp.llama_load_model_from_file(MODEL_PATH.encode('utf-8'), lparams)
ctx = llama_cpp.llama_new_context_with_model(model, lparams) ctx = llama_cpp.llama_new_context_with_model(model, cparams)
# determine the required inference memory per token: # determine the required inference memory per token:
tmp = [0, 1, 2, 3] tmp = [0, 1, 2, 3]
llama_cpp.llama_eval(ctx, (llama_cpp.c_int * len(tmp))(*tmp), len(tmp), 0, N_THREADS) llama_cpp.llama_eval(
ctx = ctx,
tokens=(llama_cpp.c_int * len(tmp))(*tmp),
n_tokens=len(tmp),
n_past=0
)# Deprecated
n_past = 0 n_past = 0
prompt = b" " + prompt prompt = b" " + prompt
embd_inp = (llama_cpp.llama_token * (len(prompt) + 1))() embd_inp = (llama_cpp.llama_token * (len(prompt) + 1))()
n_of_tok = llama_cpp.llama_tokenize(ctx, prompt, embd_inp, len(embd_inp), True) n_of_tok = llama_cpp.llama_tokenize(
model=model,
text=bytes(str(prompt),'utf-8'),
text_len=len(embd_inp),
tokens=embd_inp,
n_max_tokens=len(embd_inp),
add_bos=False,
special=False
)
embd_inp = embd_inp[:n_of_tok] embd_inp = embd_inp[:n_of_tok]
n_ctx = llama_cpp.llama_n_ctx(ctx) n_ctx = llama_cpp.llama_n_ctx(ctx)
@ -49,8 +63,11 @@ presence_penalty = 0.0
while remaining_tokens > 0: while remaining_tokens > 0:
if len(embd) > 0: if len(embd) > 0:
llama_cpp.llama_eval( llama_cpp.llama_eval(
ctx, (llama_cpp.c_int * len(embd))(*embd), len(embd), n_past, N_THREADS ctx = ctx,
) tokens=(llama_cpp.c_int * len(embd))(*embd),
n_tokens=len(embd),
n_past=n_past
)# Deprecated
n_past += len(embd) n_past += len(embd)
embd = [] embd = []
@ -93,7 +110,7 @@ while remaining_tokens > 0:
for id in embd: for id in embd:
size = 32 size = 32
buffer = (ctypes.c_char * size)() buffer = (ctypes.c_char * size)()
n = llama_cpp.llama_token_to_piece_with_model( n = llama_cpp.llama_token_to_piece(
model, llama_cpp.llama_token(id), buffer, size) model, llama_cpp.llama_token(id), buffer, size)
assert n <= size assert n <= size
print( print(

View file

@ -0,0 +1,61 @@
# Low-Level API for Llama_cpp
## Overview
This Python script, low_level_api_llama_cpp.py, demonstrates the implementation of a low-level API for interacting with the llama_cpp library. The script defines an inference that generates embeddings based on a given prompt using .gguf model.
### Prerequisites
Before running the script, ensure that you have the following dependencies installed:
. Python 3.6 or higher
. llama_cpp: A C++ library for working with .gguf model
. NumPy: A fundamental package for scientific computing with Python
. multiprocessing: A Python module for parallel computing
### Usage
install depedencies:
```bash
python -m pip install llama-cpp-python ctypes os multiprocessing
```
Run the script:
```bash
python low_level_api_llama_cpp.py
```
## Code Structure
The script is organized as follows:
### . Initialization:
Load the model from the specified path.
Create a context for model evaluation.
### . Tokenization:
Tokenize the input prompt using the llama_tokenize function.
Prepare the input tokens for model evaluation.
### . Inference:
Perform model evaluation to generate responses.
Sample from the model's output using various strategies (top-k, top-p, temperature).
### . Output:
Print the generated tokens and the corresponding decoded text.
### .Cleanup:
Free resources and print timing information.
## Configuration
Customize the inference behavior by adjusting the following variables:
#### . N_THREADS: Number of CPU threads to use for model evaluation.
#### . MODEL_PATH: Path to the model file.
#### . prompt: Input prompt for the chatbot.
## Notes
. Ensure that the llama_cpp library is built and available in the system. Follow the instructions in the llama_cpp repository for building and installing the library.
. This script is designed to work with the .gguf model and may require modifications for compatibility with other models.
## Acknowledgments
This code is based on the llama_cpp library developed by the community. Special thanks to the contributors for their efforts.
## License
This project is licensed under the MIT License - see the LICENSE file for details.