Fix llama_cpp types
This commit is contained in:
parent
b6a9a0b6ba
commit
5e7ddfc3d6
1 changed files with 33 additions and 41 deletions
|
@ -8,6 +8,7 @@ from ctypes import (
|
||||||
c_void_p,
|
c_void_p,
|
||||||
c_bool,
|
c_bool,
|
||||||
POINTER,
|
POINTER,
|
||||||
|
_Pointer, # type: ignore
|
||||||
Structure,
|
Structure,
|
||||||
Array,
|
Array,
|
||||||
c_uint8,
|
c_uint8,
|
||||||
|
@ -252,9 +253,7 @@ _lib.llama_get_state_size.restype = c_size_t
|
||||||
# Copies the state to the specified destination address.
|
# Copies the state to the specified destination address.
|
||||||
# Destination needs to have allocated enough memory.
|
# Destination needs to have allocated enough memory.
|
||||||
# Returns the number of bytes copied
|
# Returns the number of bytes copied
|
||||||
def llama_copy_state_data(
|
def llama_copy_state_data(ctx: llama_context_p, dest: Array[c_uint8]) -> c_size_t:
|
||||||
ctx: llama_context_p, dest # type: Array[c_uint8]
|
|
||||||
) -> c_size_t:
|
|
||||||
return _lib.llama_copy_state_data(ctx, dest)
|
return _lib.llama_copy_state_data(ctx, dest)
|
||||||
|
|
||||||
|
|
||||||
|
@ -278,9 +277,9 @@ _lib.llama_set_state_data.restype = c_size_t
|
||||||
def llama_load_session_file(
|
def llama_load_session_file(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
path_session: bytes,
|
path_session: bytes,
|
||||||
tokens_out, # type: Array[llama_token]
|
tokens_out: Array[llama_token],
|
||||||
n_token_capacity: c_size_t,
|
n_token_capacity: c_size_t,
|
||||||
n_token_count_out, # type: Array[c_size_t]
|
n_token_count_out: _Pointer[c_size_t],
|
||||||
) -> c_size_t:
|
) -> c_size_t:
|
||||||
return _lib.llama_load_session_file(
|
return _lib.llama_load_session_file(
|
||||||
ctx, path_session, tokens_out, n_token_capacity, n_token_count_out
|
ctx, path_session, tokens_out, n_token_capacity, n_token_count_out
|
||||||
|
@ -300,7 +299,7 @@ _lib.llama_load_session_file.restype = c_size_t
|
||||||
def llama_save_session_file(
|
def llama_save_session_file(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
path_session: bytes,
|
path_session: bytes,
|
||||||
tokens, # type: Array[llama_token]
|
tokens: Array[llama_token],
|
||||||
n_token_count: c_size_t,
|
n_token_count: c_size_t,
|
||||||
) -> c_size_t:
|
) -> c_size_t:
|
||||||
return _lib.llama_save_session_file(ctx, path_session, tokens, n_token_count)
|
return _lib.llama_save_session_file(ctx, path_session, tokens, n_token_count)
|
||||||
|
@ -321,7 +320,7 @@ _lib.llama_save_session_file.restype = c_size_t
|
||||||
# Returns 0 on success
|
# Returns 0 on success
|
||||||
def llama_eval(
|
def llama_eval(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
tokens, # type: Array[llama_token]
|
tokens: Array[llama_token],
|
||||||
n_tokens: c_int,
|
n_tokens: c_int,
|
||||||
n_past: c_int,
|
n_past: c_int,
|
||||||
n_threads: c_int,
|
n_threads: c_int,
|
||||||
|
@ -440,8 +439,8 @@ _lib.llama_token_nl.restype = llama_token
|
||||||
# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
# @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||||
def llama_sample_repetition_penalty(
|
def llama_sample_repetition_penalty(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
last_tokens_data, # type: Array[llama_token]
|
last_tokens_data: Array[llama_token],
|
||||||
last_tokens_size: c_int,
|
last_tokens_size: c_int,
|
||||||
penalty: c_float,
|
penalty: c_float,
|
||||||
):
|
):
|
||||||
|
@ -463,8 +462,8 @@ _lib.llama_sample_repetition_penalty.restype = None
|
||||||
# @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
# @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||||
def llama_sample_frequency_and_presence_penalties(
|
def llama_sample_frequency_and_presence_penalties(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
last_tokens_data, # type: Array[llama_token]
|
last_tokens_data: Array[llama_token],
|
||||||
last_tokens_size: c_int,
|
last_tokens_size: c_int,
|
||||||
alpha_frequency: c_float,
|
alpha_frequency: c_float,
|
||||||
alpha_presence: c_float,
|
alpha_presence: c_float,
|
||||||
|
@ -491,10 +490,7 @@ _lib.llama_sample_frequency_and_presence_penalties.restype = None
|
||||||
|
|
||||||
|
|
||||||
# @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
# @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||||
def llama_sample_softmax(
|
def llama_sample_softmax(ctx: llama_context_p, candidates: _Pointer[llama_token_data]):
|
||||||
ctx: llama_context_p,
|
|
||||||
candidates # type: Array[llama_token_data]
|
|
||||||
):
|
|
||||||
return _lib.llama_sample_softmax(ctx, candidates)
|
return _lib.llama_sample_softmax(ctx, candidates)
|
||||||
|
|
||||||
|
|
||||||
|
@ -508,9 +504,9 @@ _lib.llama_sample_softmax.restype = None
|
||||||
# @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
# @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
def llama_sample_top_k(
|
def llama_sample_top_k(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
k: c_int,
|
k: c_int,
|
||||||
min_keep: c_size_t = c_size_t(1)
|
min_keep: c_size_t = c_size_t(1),
|
||||||
):
|
):
|
||||||
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
|
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
|
||||||
|
|
||||||
|
@ -527,9 +523,9 @@ _lib.llama_sample_top_k.restype = None
|
||||||
# @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
# @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||||
def llama_sample_top_p(
|
def llama_sample_top_p(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
p: c_float,
|
p: c_float,
|
||||||
min_keep: c_size_t = c_size_t(1)
|
min_keep: c_size_t = c_size_t(1),
|
||||||
):
|
):
|
||||||
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
|
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
|
||||||
|
|
||||||
|
@ -546,9 +542,9 @@ _lib.llama_sample_top_p.restype = None
|
||||||
# @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
# @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||||
def llama_sample_tail_free(
|
def llama_sample_tail_free(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
z: c_float,
|
z: c_float,
|
||||||
min_keep: c_size_t = c_size_t(1)
|
min_keep: c_size_t = c_size_t(1),
|
||||||
):
|
):
|
||||||
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
|
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
|
||||||
|
|
||||||
|
@ -565,9 +561,9 @@ _lib.llama_sample_tail_free.restype = None
|
||||||
# @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
# @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||||
def llama_sample_typical(
|
def llama_sample_typical(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
p: c_float,
|
p: c_float,
|
||||||
min_keep: c_size_t = c_size_t(1)
|
min_keep: c_size_t = c_size_t(1),
|
||||||
):
|
):
|
||||||
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
|
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
|
||||||
|
|
||||||
|
@ -582,9 +578,7 @@ _lib.llama_sample_typical.restype = None
|
||||||
|
|
||||||
|
|
||||||
def llama_sample_temperature(
|
def llama_sample_temperature(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p, candidates: _Pointer[llama_token_data], temp: c_float
|
||||||
candidates, # type: Array[llama_token_data]
|
|
||||||
temp: c_float
|
|
||||||
):
|
):
|
||||||
return _lib.llama_sample_temperature(ctx, candidates, temp)
|
return _lib.llama_sample_temperature(ctx, candidates, temp)
|
||||||
|
|
||||||
|
@ -605,11 +599,11 @@ _lib.llama_sample_temperature.restype = None
|
||||||
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||||
def llama_sample_token_mirostat(
|
def llama_sample_token_mirostat(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
tau: c_float,
|
tau: c_float,
|
||||||
eta: c_float,
|
eta: c_float,
|
||||||
m: c_int,
|
m: c_int,
|
||||||
mu # type: Array[c_float]
|
mu: _Pointer[c_float],
|
||||||
) -> llama_token:
|
) -> llama_token:
|
||||||
return _lib.llama_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
|
return _lib.llama_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
|
||||||
|
|
||||||
|
@ -632,10 +626,10 @@ _lib.llama_sample_token_mirostat.restype = llama_token
|
||||||
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
# @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||||
def llama_sample_token_mirostat_v2(
|
def llama_sample_token_mirostat_v2(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p,
|
||||||
candidates, # type: Array[llama_token_data]
|
candidates: _Pointer[llama_token_data],
|
||||||
tau: c_float,
|
tau: c_float,
|
||||||
eta: c_float,
|
eta: c_float,
|
||||||
mu # type: Array[c_float]
|
mu: _Pointer[c_float],
|
||||||
) -> llama_token:
|
) -> llama_token:
|
||||||
return _lib.llama_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
|
return _lib.llama_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
|
||||||
|
|
||||||
|
@ -652,8 +646,7 @@ _lib.llama_sample_token_mirostat_v2.restype = llama_token
|
||||||
|
|
||||||
# @details Selects the token with the highest probability.
|
# @details Selects the token with the highest probability.
|
||||||
def llama_sample_token_greedy(
|
def llama_sample_token_greedy(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p, candidates: _Pointer[llama_token_data]
|
||||||
candidates # type: Array[llama_token_data]
|
|
||||||
) -> llama_token:
|
) -> llama_token:
|
||||||
return _lib.llama_sample_token_greedy(ctx, candidates)
|
return _lib.llama_sample_token_greedy(ctx, candidates)
|
||||||
|
|
||||||
|
@ -667,8 +660,7 @@ _lib.llama_sample_token_greedy.restype = llama_token
|
||||||
|
|
||||||
# @details Randomly selects a token from the candidates based on their probabilities.
|
# @details Randomly selects a token from the candidates based on their probabilities.
|
||||||
def llama_sample_token(
|
def llama_sample_token(
|
||||||
ctx: llama_context_p,
|
ctx: llama_context_p, candidates: _Pointer[llama_token_data]
|
||||||
candidates # type: Array[llama_token_data]
|
|
||||||
) -> llama_token:
|
) -> llama_token:
|
||||||
return _lib.llama_sample_token(ctx, candidates)
|
return _lib.llama_sample_token(ctx, candidates)
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue