Resolve merge conflicts
This commit is contained in:
commit
579f526246
8 changed files with 129 additions and 77 deletions
19
CHANGELOG.md
19
CHANGELOG.md
|
@ -7,6 +7,25 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
|||
|
||||
## [Unreleased]
|
||||
|
||||
## [0.1.71]
|
||||
|
||||
### Added
|
||||
|
||||
- (llama.cpp) Update llama.cpp
|
||||
|
||||
### Fixed
|
||||
|
||||
- (server) Fix several pydantic v2 migration bugs
|
||||
|
||||
## [0.1.70]
|
||||
|
||||
### Fixed
|
||||
|
||||
- (Llama.create_completion) Revert change so that `max_tokens` is not truncated to `context_size` in `create_completion`
|
||||
- (server) Fixed changed settings field names from pydantic v2 migration
|
||||
|
||||
## [0.1.69]
|
||||
|
||||
### Added
|
||||
|
||||
- (server) Streaming requests can are now interrupted pre-maturely when a concurrent request is made. Can be controlled with the `interrupt_requests` setting.
|
||||
|
|
|
@ -833,18 +833,14 @@ class Llama:
|
|||
if self.verbose:
|
||||
llama_cpp.llama_reset_timings(self.ctx)
|
||||
|
||||
if len(prompt_tokens) >= llama_cpp.llama_n_ctx(self.ctx):
|
||||
raise ValueError(
|
||||
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
||||
)
|
||||
|
||||
if max_tokens <= 0:
|
||||
# Unlimited, depending on n_ctx.
|
||||
if len(prompt_tokens) >= int(llama_cpp.llama_n_ctx(self.ctx)):
|
||||
raise ValueError(
|
||||
f"Requested tokens exceed context window of {llama_cpp.llama_n_ctx(self.ctx)}"
|
||||
)
|
||||
else:
|
||||
max_tokens = int(llama_cpp.llama_n_ctx(self.ctx)) - len(prompt_tokens)
|
||||
elif len(prompt_tokens) + max_tokens > int(llama_cpp.llama_n_ctx(self.ctx)):
|
||||
raise ValueError(
|
||||
f"Requested tokens ({len(prompt_tokens)}) exceed context window of {self._n_ctx}"
|
||||
)
|
||||
max_tokens = llama_cpp.llama_n_ctx(self.ctx) - len(prompt_tokens)
|
||||
|
||||
# Truncate max_tokens if requested tokens would exceed the context window
|
||||
max_tokens = (
|
||||
|
|
|
@ -326,13 +326,23 @@ _lib.llama_mlock_supported.restype = c_bool
|
|||
# // Initialize the llama + ggml backend
|
||||
# // If numa is true, use NUMA optimizations
|
||||
# // Call once at the start of the program
|
||||
# LLAMA_API void llama_init_backend(bool numa);
|
||||
def llama_init_backend(numa: c_bool):
|
||||
return _lib.llama_init_backend(numa)
|
||||
# LLAMA_API void llama_backend_init(bool numa);
|
||||
def llama_backend_init(numa: c_bool):
|
||||
return _lib.llama_backend_init(numa)
|
||||
|
||||
|
||||
_lib.llama_init_backend.argtypes = [c_bool]
|
||||
_lib.llama_init_backend.restype = None
|
||||
_lib.llama_backend_init.argtypes = [c_bool]
|
||||
_lib.llama_backend_init.restype = None
|
||||
|
||||
|
||||
# // Call once at the end of the program - currently only used for MPI
|
||||
# LLAMA_API void llama_backend_free();
|
||||
def llama_backend_free():
|
||||
return _lib.llama_backend_free()
|
||||
|
||||
|
||||
_lib.llama_backend_free.argtypes = []
|
||||
_lib.llama_backend_free.restype = None
|
||||
|
||||
|
||||
# LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
|
@ -819,6 +829,39 @@ _lib.llama_sample_frequency_and_presence_penalties.argtypes = [
|
|||
_lib.llama_sample_frequency_and_presence_penalties.restype = None
|
||||
|
||||
|
||||
# /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||
# /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||
# /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||
# /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||
# /// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
|
||||
# LLAMA_API void llama_sample_classifier_free_guidance(
|
||||
# struct llama_context * ctx,
|
||||
# llama_token_data_array * candidates,
|
||||
# struct llama_context * guidance_ctx,
|
||||
# float scale,
|
||||
# float smooth_factor);
|
||||
def llama_sample_classifier_free_guidance(
|
||||
ctx: llama_context_p,
|
||||
candidates, # type: _Pointer[llama_token_data_array]
|
||||
guidance_ctx: llama_context_p,
|
||||
scale: c_float,
|
||||
smooth_factor: c_float,
|
||||
):
|
||||
return _lib.llama_sample_classifier_free_guidance(
|
||||
ctx, candidates, guidance_ctx, scale, smooth_factor
|
||||
)
|
||||
|
||||
|
||||
_lib.llama_sample_classifier_free_guidance.argtypes = [
|
||||
llama_context_p,
|
||||
llama_token_data_array_p,
|
||||
llama_context_p,
|
||||
c_float,
|
||||
c_float,
|
||||
]
|
||||
_lib.llama_sample_classifier_free_guidance.restype = None
|
||||
|
||||
|
||||
# @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
# LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
def llama_sample_softmax(
|
||||
|
@ -1063,5 +1106,5 @@ _lib.llama_print_system_info.restype = c_char_p
|
|||
_llama_initialized = False
|
||||
|
||||
if not _llama_initialized:
|
||||
llama_init_backend(c_bool(False))
|
||||
llama_backend_init(c_bool(False))
|
||||
_llama_initialized = True
|
||||
|
|
|
@ -30,14 +30,14 @@ from llama_cpp.server.app import create_app, Settings
|
|||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
for name, field in Settings.__model_fields__.items():
|
||||
description = field.field_info.description
|
||||
for name, field in Settings.model_fields.items():
|
||||
description = field.description
|
||||
if field.default is not None and description is not None:
|
||||
description += f" (default: {field.default})"
|
||||
parser.add_argument(
|
||||
f"--{name}",
|
||||
dest=name,
|
||||
type=field.type_,
|
||||
type=field.annotation if field.annotation is not None else str,
|
||||
help=description,
|
||||
)
|
||||
|
||||
|
|
|
@ -84,12 +84,8 @@ class Settings(BaseSettings):
|
|||
verbose: bool = Field(
|
||||
default=True, description="Whether to print debug information."
|
||||
)
|
||||
host: str = Field(
|
||||
default="localhost", description="Listen address"
|
||||
)
|
||||
port: int = Field(
|
||||
default=8000, description="Listen port"
|
||||
)
|
||||
host: str = Field(default="localhost", description="Listen address")
|
||||
port: int = Field(default=8000, description="Listen port")
|
||||
interrupt_requests: bool = Field(
|
||||
default=True,
|
||||
description="Whether to interrupt requests when a new request is received.",
|
||||
|
@ -183,7 +179,7 @@ def get_settings():
|
|||
yield settings
|
||||
|
||||
|
||||
model_field = Field(description="The model to use for generating completions.")
|
||||
model_field = Field(description="The model to use for generating completions.", default=None)
|
||||
|
||||
max_tokens_field = Field(
|
||||
default=16, ge=1, le=2048, description="The maximum number of tokens to generate."
|
||||
|
@ -247,21 +243,18 @@ mirostat_mode_field = Field(
|
|||
default=0,
|
||||
ge=0,
|
||||
le=2,
|
||||
description="Enable Mirostat constant-perplexity algorithm of the specified version (1 or 2; 0 = disabled)"
|
||||
description="Enable Mirostat constant-perplexity algorithm of the specified version (1 or 2; 0 = disabled)",
|
||||
)
|
||||
|
||||
mirostat_tau_field = Field(
|
||||
default=5.0,
|
||||
ge=0.0,
|
||||
le=10.0,
|
||||
description="Mirostat target entropy, i.e. the target perplexity - lower values produce focused and coherent text, larger values produce more diverse and less coherent text"
|
||||
description="Mirostat target entropy, i.e. the target perplexity - lower values produce focused and coherent text, larger values produce more diverse and less coherent text",
|
||||
)
|
||||
|
||||
mirostat_eta_field = Field(
|
||||
default=0.1,
|
||||
ge=0.001,
|
||||
le=1.0,
|
||||
description="Mirostat learning rate"
|
||||
default=0.1, ge=0.001, le=1.0, description="Mirostat learning rate"
|
||||
)
|
||||
|
||||
|
||||
|
@ -299,22 +292,23 @@ class CreateCompletionRequest(BaseModel):
|
|||
model: Optional[str] = model_field
|
||||
n: Optional[int] = 1
|
||||
best_of: Optional[int] = 1
|
||||
user: Optional[str] = Field(None)
|
||||
user: Optional[str] = Field(default=None)
|
||||
|
||||
# llama.cpp specific parameters
|
||||
top_k: int = top_k_field
|
||||
repeat_penalty: float = repeat_penalty_field
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||
"stop": ["\n", "###"],
|
||||
}
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
|
||||
"stop": ["\n", "###"],
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
def make_logit_bias_processor(
|
||||
|
@ -333,7 +327,7 @@ def make_logit_bias_processor(
|
|||
|
||||
elif logit_bias_type == "tokens":
|
||||
for token, score in logit_bias.items():
|
||||
token = token.encode('utf-8')
|
||||
token = token.encode("utf-8")
|
||||
for input_id in llama.tokenize(token, add_bos=False):
|
||||
to_bias[input_id] = score
|
||||
|
||||
|
@ -357,7 +351,7 @@ async def create_completion(
|
|||
request: Request,
|
||||
body: CreateCompletionRequest,
|
||||
llama: llama_cpp.Llama = Depends(get_llama),
|
||||
):
|
||||
) -> llama_cpp.Completion:
|
||||
if isinstance(body.prompt, list):
|
||||
assert len(body.prompt) <= 1
|
||||
body.prompt = body.prompt[0] if len(body.prompt) > 0 else ""
|
||||
|
@ -369,7 +363,7 @@ async def create_completion(
|
|||
"logit_bias_type",
|
||||
"user",
|
||||
}
|
||||
kwargs = body.dict(exclude=exclude)
|
||||
kwargs = body.model_dump(exclude=exclude)
|
||||
|
||||
if body.logit_bias is not None:
|
||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||
|
@ -401,7 +395,7 @@ async def create_completion(
|
|||
|
||||
return EventSourceResponse(
|
||||
recv_chan, data_sender_callable=partial(event_publisher, send_chan)
|
||||
)
|
||||
) # type: ignore
|
||||
else:
|
||||
completion: llama_cpp.Completion = await run_in_threadpool(llama, **kwargs) # type: ignore
|
||||
return completion
|
||||
|
@ -410,16 +404,17 @@ async def create_completion(
|
|||
class CreateEmbeddingRequest(BaseModel):
|
||||
model: Optional[str] = model_field
|
||||
input: Union[str, List[str]] = Field(description="The input to embed.")
|
||||
user: Optional[str]
|
||||
user: Optional[str] = Field(default=None)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"input": "The food was delicious and the waiter...",
|
||||
}
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"input": "The food was delicious and the waiter...",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
@router.post(
|
||||
|
@ -429,7 +424,7 @@ async def create_embedding(
|
|||
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
|
||||
):
|
||||
return await run_in_threadpool(
|
||||
llama.create_embedding, **request.dict(exclude={"user"})
|
||||
llama.create_embedding, **request.model_dump(exclude={"user"})
|
||||
)
|
||||
|
||||
|
||||
|
@ -466,21 +461,22 @@ class CreateChatCompletionRequest(BaseModel):
|
|||
repeat_penalty: float = repeat_penalty_field
|
||||
logit_bias_type: Optional[Literal["input_ids", "tokens"]] = Field(None)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"messages": [
|
||||
ChatCompletionRequestMessage(
|
||||
role="system", content="You are a helpful assistant."
|
||||
),
|
||||
ChatCompletionRequestMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
),
|
||||
]
|
||||
}
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
"examples": [
|
||||
{
|
||||
"messages": [
|
||||
ChatCompletionRequestMessage(
|
||||
role="system", content="You are a helpful assistant."
|
||||
).model_dump(),
|
||||
ChatCompletionRequestMessage(
|
||||
role="user", content="What is the capital of France?"
|
||||
).model_dump(),
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
@router.post(
|
||||
|
@ -491,14 +487,14 @@ async def create_chat_completion(
|
|||
body: CreateChatCompletionRequest,
|
||||
llama: llama_cpp.Llama = Depends(get_llama),
|
||||
settings: Settings = Depends(get_settings),
|
||||
) -> Union[llama_cpp.ChatCompletion]: # type: ignore
|
||||
) -> llama_cpp.ChatCompletion:
|
||||
exclude = {
|
||||
"n",
|
||||
"logit_bias",
|
||||
"logit_bias_type",
|
||||
"user",
|
||||
}
|
||||
kwargs = body.dict(exclude=exclude)
|
||||
kwargs = body.model_dump(exclude=exclude)
|
||||
|
||||
if body.logit_bias is not None:
|
||||
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
|
||||
|
@ -531,7 +527,7 @@ async def create_chat_completion(
|
|||
return EventSourceResponse(
|
||||
recv_chan,
|
||||
data_sender_callable=partial(event_publisher, send_chan),
|
||||
)
|
||||
) # type: ignore
|
||||
else:
|
||||
completion: llama_cpp.ChatCompletion = await run_in_threadpool(
|
||||
llama.create_chat_completion, **kwargs # type: ignore
|
||||
|
@ -551,8 +547,6 @@ class ModelList(TypedDict):
|
|||
data: List[ModelData]
|
||||
|
||||
|
||||
|
||||
|
||||
@router.get("/v1/models")
|
||||
async def get_models(
|
||||
settings: Settings = Depends(get_settings),
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "llama_cpp_python"
|
||||
version = "0.1.68"
|
||||
version = "0.1.71"
|
||||
description = "Python bindings for the llama.cpp library"
|
||||
authors = ["Andrei Betlen <abetlen@gmail.com>"]
|
||||
license = "MIT"
|
||||
|
|
4
setup.py
4
setup.py
|
@ -10,7 +10,7 @@ setup(
|
|||
description="A Python wrapper for llama.cpp",
|
||||
long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
version="0.1.68",
|
||||
version="0.1.71",
|
||||
author="Andrei Betlen",
|
||||
author_email="abetlen@gmail.com",
|
||||
license="MIT",
|
||||
|
@ -18,7 +18,7 @@ setup(
|
|||
packages=["llama_cpp", "llama_cpp.server"],
|
||||
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0", "diskcache>=5.6.1"],
|
||||
extras_require={
|
||||
"server": ["uvicorn>=0.22.1", "fastapi>=0.100.0", "pydantic-settings>=2.0.1", "sse-starlette>=1.6.1"],
|
||||
"server": ["uvicorn>=0.22.0", "fastapi>=0.100.0", "pydantic-settings>=2.0.1", "sse-starlette>=1.6.1"],
|
||||
},
|
||||
python_requires=">=3.7",
|
||||
classifiers=[
|
||||
|
|
2
vendor/llama.cpp
vendored
2
vendor/llama.cpp
vendored
|
@ -1 +1 @@
|
|||
Subproject commit 64639555ff93c8ead2b80becb49cc6b60aeac240
|
||||
Subproject commit 32c54116318929c90fd7ae814cf9b5232cd44c36
|
Loading…
Add table
Reference in a new issue