llama_cpp server: app is now importable, still runnable as a module

This commit is contained in:
Lucas Doyle 2023-04-28 22:43:37 -07:00
parent 755f9fa455
commit 468377b0e2
3 changed files with 279 additions and 268 deletions

View file

View file

@ -5,283 +5,28 @@ To run this example:
```bash ```bash
pip install fastapi uvicorn sse-starlette pip install fastapi uvicorn sse-starlette
export MODEL=../models/7B/... export MODEL=../models/7B/...
uvicorn fastapi_server_chat:app --reload ```
Then run:
```
uvicorn llama_cpp.server.app:app --reload
```
or
```
python3 -m llama_cpp.server
``` ```
Then visit http://localhost:8000/docs to see the interactive API docs. Then visit http://localhost:8000/docs to see the interactive API docs.
""" """
import os import os
import json import uvicorn
from threading import Lock
from typing import List, Optional, Literal, Union, Iterator, Dict
from typing_extensions import TypedDict
import llama_cpp
from fastapi import Depends, FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
from sse_starlette.sse import EventSourceResponse
class Settings(BaseSettings):
model: str
n_ctx: int = 2048
n_batch: int = 512
n_threads: int = max((os.cpu_count() or 2) // 2, 1)
f16_kv: bool = True
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
use_mmap: bool = True
embedding: bool = True
last_n_tokens_size: int = 64
logits_all: bool = False
cache: bool = False # WARNING: This is an experimental feature
app = FastAPI(
title="🦙 llama.cpp Python API",
version="0.0.1",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
settings = Settings()
llama = llama_cpp.Llama(
settings.model,
f16_kv=settings.f16_kv,
use_mlock=settings.use_mlock,
use_mmap=settings.use_mmap,
embedding=settings.embedding,
logits_all=settings.logits_all,
n_threads=settings.n_threads,
n_batch=settings.n_batch,
n_ctx=settings.n_ctx,
last_n_tokens_size=settings.last_n_tokens_size,
)
if settings.cache:
cache = llama_cpp.LlamaCache()
llama.set_cache(cache)
llama_lock = Lock()
def get_llama():
with llama_lock:
yield llama
class CreateCompletionRequest(BaseModel):
prompt: Union[str, List[str]]
suffix: Optional[str] = Field(None)
max_tokens: int = 16
temperature: float = 0.8
top_p: float = 0.95
echo: bool = False
stop: Optional[List[str]] = []
stream: bool = False
# ignored or currently unsupported
model: Optional[str] = Field(None)
n: Optional[int] = 1
logprobs: Optional[int] = Field(None)
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
best_of: Optional[int] = 1
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None)
# llama.cpp specific parameters
top_k: int = 40
repeat_penalty: float = 1.1
class Config:
schema_extra = {
"example": {
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
"stop": ["\n", "###"],
}
}
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
@app.post(
"/v1/completions",
response_model=CreateCompletionResponse,
)
def create_completion(
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
):
if isinstance(request.prompt, list):
request.prompt = "".join(request.prompt)
completion_or_chunks = llama(
**request.dict(
exclude={
"model",
"n",
"frequency_penalty",
"presence_penalty",
"best_of",
"logit_bias",
"user",
}
)
)
if request.stream:
chunks: Iterator[llama_cpp.CompletionChunk] = completion_or_chunks # type: ignore
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
completion: llama_cpp.Completion = completion_or_chunks # type: ignore
return completion
class CreateEmbeddingRequest(BaseModel):
model: Optional[str]
input: str
user: Optional[str]
class Config:
schema_extra = {
"example": {
"input": "The food was delicious and the waiter...",
}
}
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
@app.post(
"/v1/embeddings",
response_model=CreateEmbeddingResponse,
)
def create_embedding(
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
):
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
class ChatCompletionRequestMessage(BaseModel):
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
content: str
user: Optional[str] = None
class CreateChatCompletionRequest(BaseModel):
model: Optional[str]
messages: List[ChatCompletionRequestMessage]
temperature: float = 0.8
top_p: float = 0.95
stream: bool = False
stop: Optional[List[str]] = []
max_tokens: int = 128
# ignored or currently unsupported
model: Optional[str] = Field(None)
n: Optional[int] = 1
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None)
# llama.cpp specific parameters
repeat_penalty: float = 1.1
class Config:
schema_extra = {
"example": {
"messages": [
ChatCompletionRequestMessage(
role="system", content="You are a helpful assistant."
),
ChatCompletionRequestMessage(
role="user", content="What is the capital of France?"
),
]
}
}
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
@app.post(
"/v1/chat/completions",
response_model=CreateChatCompletionResponse,
)
def create_chat_completion(
request: CreateChatCompletionRequest,
llama: llama_cpp.Llama = Depends(get_llama),
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
completion_or_chunks = llama.create_chat_completion(
**request.dict(
exclude={
"model",
"n",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
}
),
)
if request.stream:
async def server_sent_events(
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
):
for chat_chunk in chat_chunks:
yield dict(data=json.dumps(chat_chunk))
yield dict(data="[DONE]")
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
return EventSourceResponse(
server_sent_events(chunks),
)
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
return completion
class ModelData(TypedDict):
id: str
object: Literal["model"]
owned_by: str
permissions: List[str]
class ModelList(TypedDict):
object: Literal["list"]
data: List[ModelData]
GetModelResponse = create_model_from_typeddict(ModelList)
@app.get("/v1/models", response_model=GetModelResponse)
def get_models() -> ModelList:
return {
"object": "list",
"data": [
{
"id": llama.model_path,
"object": "model",
"owned_by": "me",
"permissions": [],
}
],
}
from llama_cpp.server.app import app
if __name__ == "__main__": if __name__ == "__main__":
import os
import uvicorn
uvicorn.run( uvicorn.run(
app, host=os.getenv("HOST", "localhost"), port=int(os.getenv("PORT", 8000)) app, host=os.getenv("HOST", "localhost"), port=int(os.getenv("PORT", 8000))

266
llama_cpp/server/app.py Normal file
View file

@ -0,0 +1,266 @@
import os
import json
from threading import Lock
from typing import List, Optional, Literal, Union, Iterator, Dict
from typing_extensions import TypedDict
import llama_cpp
from fastapi import Depends, FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, BaseSettings, Field, create_model_from_typeddict
from sse_starlette.sse import EventSourceResponse
class Settings(BaseSettings):
model: str = os.environ["MODEL"]
n_ctx: int = 2048
n_batch: int = 512
n_threads: int = max((os.cpu_count() or 2) // 2, 1)
f16_kv: bool = True
use_mlock: bool = False # This causes a silent failure on platforms that don't support mlock (e.g. Windows) took forever to figure out...
use_mmap: bool = True
embedding: bool = True
last_n_tokens_size: int = 64
logits_all: bool = False
cache: bool = False # WARNING: This is an experimental feature
app = FastAPI(
title="🦙 llama.cpp Python API",
version="0.0.1",
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
settings = Settings()
llama = llama_cpp.Llama(
settings.model,
f16_kv=settings.f16_kv,
use_mlock=settings.use_mlock,
use_mmap=settings.use_mmap,
embedding=settings.embedding,
logits_all=settings.logits_all,
n_threads=settings.n_threads,
n_batch=settings.n_batch,
n_ctx=settings.n_ctx,
last_n_tokens_size=settings.last_n_tokens_size,
)
if settings.cache:
cache = llama_cpp.LlamaCache()
llama.set_cache(cache)
llama_lock = Lock()
def get_llama():
with llama_lock:
yield llama
class CreateCompletionRequest(BaseModel):
prompt: Union[str, List[str]]
suffix: Optional[str] = Field(None)
max_tokens: int = 16
temperature: float = 0.8
top_p: float = 0.95
echo: bool = False
stop: Optional[List[str]] = []
stream: bool = False
# ignored or currently unsupported
model: Optional[str] = Field(None)
n: Optional[int] = 1
logprobs: Optional[int] = Field(None)
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
best_of: Optional[int] = 1
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None)
# llama.cpp specific parameters
top_k: int = 40
repeat_penalty: float = 1.1
class Config:
schema_extra = {
"example": {
"prompt": "\n\n### Instructions:\nWhat is the capital of France?\n\n### Response:\n",
"stop": ["\n", "###"],
}
}
CreateCompletionResponse = create_model_from_typeddict(llama_cpp.Completion)
@app.post(
"/v1/completions",
response_model=CreateCompletionResponse,
)
def create_completion(
request: CreateCompletionRequest, llama: llama_cpp.Llama = Depends(get_llama)
):
if isinstance(request.prompt, list):
request.prompt = "".join(request.prompt)
completion_or_chunks = llama(
**request.dict(
exclude={
"model",
"n",
"frequency_penalty",
"presence_penalty",
"best_of",
"logit_bias",
"user",
}
)
)
if request.stream:
chunks: Iterator[llama_cpp.CompletionChunk] = completion_or_chunks # type: ignore
return EventSourceResponse(dict(data=json.dumps(chunk)) for chunk in chunks)
completion: llama_cpp.Completion = completion_or_chunks # type: ignore
return completion
class CreateEmbeddingRequest(BaseModel):
model: Optional[str]
input: str
user: Optional[str]
class Config:
schema_extra = {
"example": {
"input": "The food was delicious and the waiter...",
}
}
CreateEmbeddingResponse = create_model_from_typeddict(llama_cpp.Embedding)
@app.post(
"/v1/embeddings",
response_model=CreateEmbeddingResponse,
)
def create_embedding(
request: CreateEmbeddingRequest, llama: llama_cpp.Llama = Depends(get_llama)
):
return llama.create_embedding(**request.dict(exclude={"model", "user"}))
class ChatCompletionRequestMessage(BaseModel):
role: Union[Literal["system"], Literal["user"], Literal["assistant"]]
content: str
user: Optional[str] = None
class CreateChatCompletionRequest(BaseModel):
model: Optional[str]
messages: List[ChatCompletionRequestMessage]
temperature: float = 0.8
top_p: float = 0.95
stream: bool = False
stop: Optional[List[str]] = []
max_tokens: int = 128
# ignored or currently unsupported
model: Optional[str] = Field(None)
n: Optional[int] = 1
presence_penalty: Optional[float] = 0
frequency_penalty: Optional[float] = 0
logit_bias: Optional[Dict[str, float]] = Field(None)
user: Optional[str] = Field(None)
# llama.cpp specific parameters
repeat_penalty: float = 1.1
class Config:
schema_extra = {
"example": {
"messages": [
ChatCompletionRequestMessage(
role="system", content="You are a helpful assistant."
),
ChatCompletionRequestMessage(
role="user", content="What is the capital of France?"
),
]
}
}
CreateChatCompletionResponse = create_model_from_typeddict(llama_cpp.ChatCompletion)
@app.post(
"/v1/chat/completions",
response_model=CreateChatCompletionResponse,
)
def create_chat_completion(
request: CreateChatCompletionRequest,
llama: llama_cpp.Llama = Depends(get_llama),
) -> Union[llama_cpp.ChatCompletion, EventSourceResponse]:
completion_or_chunks = llama.create_chat_completion(
**request.dict(
exclude={
"model",
"n",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
}
),
)
if request.stream:
async def server_sent_events(
chat_chunks: Iterator[llama_cpp.ChatCompletionChunk],
):
for chat_chunk in chat_chunks:
yield dict(data=json.dumps(chat_chunk))
yield dict(data="[DONE]")
chunks: Iterator[llama_cpp.ChatCompletionChunk] = completion_or_chunks # type: ignore
return EventSourceResponse(
server_sent_events(chunks),
)
completion: llama_cpp.ChatCompletion = completion_or_chunks # type: ignore
return completion
class ModelData(TypedDict):
id: str
object: Literal["model"]
owned_by: str
permissions: List[str]
class ModelList(TypedDict):
object: Literal["list"]
data: List[ModelData]
GetModelResponse = create_model_from_typeddict(ModelList)
@app.get("/v1/models", response_model=GetModelResponse)
def get_models() -> ModelList:
return {
"object": "list",
"data": [
{
"id": llama.model_path,
"object": "model",
"owned_by": "me",
"permissions": [],
}
],
}