Merge pull request #15 from SagsMug/main
llama.cpp chat example implementation
This commit is contained in:
commit
41365b0456
2 changed files with 541 additions and 0 deletions
148
examples/low_level_api/common.py
Normal file
148
examples/low_level_api/common.py
Normal file
|
@ -0,0 +1,148 @@
|
|||
import os
|
||||
import argparse
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Optional
|
||||
|
||||
# Based on https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
|
||||
|
||||
|
||||
@dataclass
|
||||
class GptParams:
|
||||
seed: int = -1
|
||||
n_threads: int = min(4, os.cpu_count() or 1)
|
||||
n_predict: int = 128
|
||||
repeat_last_n: int = 64
|
||||
n_parts: int = -1
|
||||
n_ctx: int = 512
|
||||
n_batch: int = 8
|
||||
n_keep: int = 0
|
||||
|
||||
top_k: int = 40
|
||||
top_p: float = 0.95
|
||||
temp: float = 0.80
|
||||
repeat_penalty: float = 1.10
|
||||
|
||||
model: str = "./models/llama-7B/ggml-model.bin"
|
||||
prompt: str = ""
|
||||
input_prefix: str = " "
|
||||
|
||||
antiprompt: List[str] = field(default_factory=list)
|
||||
|
||||
memory_f16: bool = True
|
||||
random_prompt: bool = False
|
||||
use_color: bool = False
|
||||
interactive: bool = False
|
||||
|
||||
embedding: bool = False
|
||||
interactive_start: bool = False
|
||||
|
||||
instruct: bool = False
|
||||
ignore_eos: bool = False
|
||||
perplexity: bool = False
|
||||
use_mlock: bool = False
|
||||
mem_test: bool = False
|
||||
verbose_prompt: bool = False
|
||||
|
||||
file: str = None
|
||||
|
||||
# If chat ended prematurely, append this to the conversation to fix it.
|
||||
# Set to "\nUser:" etc.
|
||||
# This is an alternative to input_prefix which always adds it, so it potentially duplicates "User:""
|
||||
fix_prefix: str = " "
|
||||
output_postfix: str = ""
|
||||
input_echo: bool = True,
|
||||
|
||||
# Default instructions for Alpaca
|
||||
# switch to "Human" and "Assistant" for Vicuna.
|
||||
# TODO: TBD how they are gonna handle this upstream
|
||||
instruct_inp_prefix: str="\n\n### Instruction:\n\n"
|
||||
instruct_inp_suffix: str="\n\n### Response:\n\n"
|
||||
|
||||
|
||||
def gpt_params_parse(argv = None, params: Optional[GptParams] = None):
|
||||
if params is None:
|
||||
params = GptParams()
|
||||
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("-s", "--seed", type=int, default=-1, help="RNG seed (use random seed for <= 0)",dest="seed")
|
||||
parser.add_argument("-t", "--threads", type=int, default=min(4, os.cpu_count() or 1), help="number of threads to use during computation",dest="n_threads")
|
||||
parser.add_argument("-p", "--prompt", type=str, default="", help="initial prompt",dest="prompt")
|
||||
parser.add_argument("-f", "--file", type=str, default=None, help="file containing initial prompt to load",dest="file")
|
||||
parser.add_argument("-c", "--ctx_size", type=int, default=512, help="size of the prompt context",dest="n_ctx")
|
||||
parser.add_argument("--memory_f32", action="store_false", help="use f32 instead of f16 for memory key+value",dest="memory_f16")
|
||||
parser.add_argument("--top_p", type=float, default=0.95, help="top-p samplin",dest="top_p")
|
||||
parser.add_argument("--top_k", type=int, default=40, help="top-k sampling",dest="top_k")
|
||||
parser.add_argument("--temp", type=float, default=0.80, help="temperature",dest="temp")
|
||||
parser.add_argument("--n_predict", type=int, default=128, help="number of model parts",dest="n_predict")
|
||||
parser.add_argument("--repeat_last_n", type=int, default=64, help="last n tokens to consider for penalize ",dest="repeat_last_n")
|
||||
parser.add_argument("--repeat_penalty", type=float, default=1.10, help="penalize repeat sequence of tokens",dest="repeat_penalty")
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=8, help="batch size for prompt processing",dest="n_batch")
|
||||
parser.add_argument("--keep", type=int, default=0, help="number of tokens to keep from the initial prompt",dest="n_keep")
|
||||
parser.add_argument("-m", "--model", type=str, default="./models/llama-7B/ggml-model.bin", help="model path",dest="model")
|
||||
parser.add_argument(
|
||||
"-i", "--interactive", action="store_true", help="run in interactive mode", dest="interactive"
|
||||
)
|
||||
parser.add_argument("--embedding", action="store_true", help="", dest="embedding")
|
||||
parser.add_argument(
|
||||
"--interactive-start",
|
||||
action="store_true",
|
||||
help="run in interactive mode",
|
||||
dest="interactive"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--interactive-first",
|
||||
action="store_true",
|
||||
help="run in interactive mode and wait for input right away",
|
||||
dest="interactive_start"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-ins",
|
||||
"--instruct",
|
||||
action="store_true",
|
||||
help="run in instruction mode (use with Alpaca or Vicuna models)",
|
||||
dest="instruct"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--color",
|
||||
action="store_true",
|
||||
help="colorise output to distinguish prompt and user input from generations",
|
||||
dest="use_color"
|
||||
)
|
||||
parser.add_argument("--mlock", action="store_true",help="force system to keep model in RAM rather than swapping or compressing",dest="use_mlock")
|
||||
parser.add_argument("--mtest", action="store_true",help="compute maximum memory usage",dest="mem_test")
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--reverse-prompt",
|
||||
type=str,
|
||||
action='append',
|
||||
help="poll user input upon seeing PROMPT (can be\nspecified more than once for multiple prompts).",
|
||||
dest="antiprompt"
|
||||
)
|
||||
parser.add_argument("--perplexity", action="store_true", help="compute perplexity over the prompt", dest="perplexity")
|
||||
parser.add_argument("--ignore-eos", action="store_true", help="ignore end of stream token and continue generating", dest="ignore_eos")
|
||||
parser.add_argument("--n_parts", type=int, default=-1, help="number of model parts", dest="n_parts")
|
||||
parser.add_argument("--random-prompt", action="store_true", help="start with a randomized prompt.", dest="random_prompt")
|
||||
parser.add_argument("--in-prefix", type=str, default="", help="string to prefix user inputs with", dest="input_prefix")
|
||||
parser.add_argument("--fix-prefix", type=str, default="", help="append to input when generated n_predict tokens", dest="fix_prefix")
|
||||
parser.add_argument("--out-postfix", type=str, default="", help="append to input", dest="output_postfix")
|
||||
parser.add_argument("--input-noecho", action="store_false", help="dont output the input", dest="input_echo")
|
||||
args = parser.parse_args(argv)
|
||||
return args
|
||||
|
||||
def gpt_random_prompt(rng):
|
||||
return [
|
||||
"So",
|
||||
"Once upon a time",
|
||||
"When",
|
||||
"The",
|
||||
"After",
|
||||
"If",
|
||||
"import",
|
||||
"He",
|
||||
"She",
|
||||
"They",
|
||||
][rng % 10]
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(GptParams(gpt_params_parse()))
|
393
examples/low_level_api/low_level_api_chat_cpp.py
Normal file
393
examples/low_level_api/low_level_api_chat_cpp.py
Normal file
|
@ -0,0 +1,393 @@
|
|||
"""
|
||||
This is an example implementation of main.cpp from llama.cpp
|
||||
Quirks:
|
||||
* Its not exactly alike since this port is designed around programmatic I/O
|
||||
* Input is always echoed if on, so it should be turned off when using "input()"
|
||||
* The first antiprompt should be the userprompt like "\nUser:",
|
||||
because its added when n_predict is reached (aka generation ended prematurely)
|
||||
* n_predict can be set to -1 for unlimited length responses (or just a really high value)
|
||||
* Instruction mode adds its own antiprompt.
|
||||
You should also still be feeding the model with a "primer" prompt that
|
||||
shows it the expected format.
|
||||
"""
|
||||
import sys
|
||||
from time import time
|
||||
from os import cpu_count
|
||||
|
||||
import llama_cpp
|
||||
from common import GptParams, gpt_params_parse, gpt_random_prompt
|
||||
|
||||
ANSI_COLOR_RESET = "\x1b[0m"
|
||||
ANSI_COLOR_YELLOW = "\x1b[33m"
|
||||
ANSI_BOLD = "\x1b[1m"
|
||||
ANSI_COLOR_GREEN = "\x1b[32m"
|
||||
|
||||
CONSOLE_COLOR_DEFAULT = ANSI_COLOR_RESET
|
||||
CONSOLE_COLOR_PROMPT = ANSI_COLOR_YELLOW
|
||||
CONSOLE_COLOR_USER_INPUT = ANSI_BOLD + ANSI_COLOR_GREEN
|
||||
|
||||
# A LLaMA interactive session
|
||||
class LLaMAInteract:
|
||||
def __init__(self, params: GptParams) -> None:
|
||||
# input args
|
||||
self.params = params
|
||||
|
||||
if (self.params.perplexity):
|
||||
raise NotImplementedError("""************
|
||||
please use the 'perplexity' tool for perplexity calculations
|
||||
************""")
|
||||
|
||||
if (self.params.embedding):
|
||||
raise NotImplementedError("""************
|
||||
please use the 'embedding' tool for embedding calculations
|
||||
************""")
|
||||
|
||||
if (self.params.n_ctx > 2048):
|
||||
print(f"""warning: model does not support \
|
||||
context sizes greater than 2048 tokens ({self.params.n_ctx} \
|
||||
specified) expect poor results""", file=sys.stderr)
|
||||
|
||||
if (self.params.seed <= 0):
|
||||
self.params.seed = int(time())
|
||||
|
||||
print(f"seed = {self.params.seed}", file=sys.stderr)
|
||||
|
||||
if (self.params.random_prompt):
|
||||
self.params.prompt = gpt_random_prompt(self.params.seed)
|
||||
|
||||
# runtime args
|
||||
self.input_consumed = 0
|
||||
self.n_past = 0
|
||||
self.first_antiprompt = []
|
||||
self.remaining_tokens = self.params.n_predict
|
||||
self.output_echo = self.params.input_echo
|
||||
|
||||
# model load
|
||||
self.lparams = llama_cpp.llama_context_default_params()
|
||||
self.lparams.n_ctx = self.params.n_ctx
|
||||
self.lparams.n_parts = self.params.n_parts
|
||||
self.lparams.seed = self.params.seed
|
||||
self.lparams.memory_f16 = self.params.memory_f16
|
||||
self.lparams.use_mlock = self.params.use_mlock
|
||||
|
||||
self.ctx = llama_cpp.llama_init_from_file(self.params.model.encode("utf8"), self.lparams)
|
||||
if (not self.ctx):
|
||||
raise RuntimeError(f"error: failed to load model '{self.params.model}'")
|
||||
|
||||
print(file=sys.stderr)
|
||||
print(f"system_info: n_threads = {self.params.n_threads} / {cpu_count()} \
|
||||
| {llama_cpp.llama_print_system_info().decode('utf8')}", file=sys.stderr)
|
||||
|
||||
# determine the required inference memory per token:
|
||||
if (self.params.mem_test):
|
||||
tmp = [0, 1, 2, 3]
|
||||
llama_cpp.llama_eval(self.ctx, (llama_cpp.c_int * len(tmp))(*tmp), len(tmp), 0, self.n_threads)
|
||||
llama_cpp.llama_print_timings(self.ctx)
|
||||
self.exit()
|
||||
return
|
||||
|
||||
# create internal context
|
||||
self.n_ctx = llama_cpp.llama_n_ctx(self.ctx)
|
||||
|
||||
# Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
self.params.prompt = " " + self.params.prompt
|
||||
|
||||
# Load prompt file
|
||||
if (self.params.file):
|
||||
with open(self.params.file) as f:
|
||||
self.params.prompt = f.read()
|
||||
|
||||
# tokenize the prompt
|
||||
self.embd = []
|
||||
self.embd_inp = self._tokenize(self.params.prompt)
|
||||
|
||||
if (len(self.embd_inp) > self.params.n_ctx - 4):
|
||||
raise RuntimeError(f"error: prompt is too long ({len(self.embd_inp)} tokens, max {self.params.n_ctx - 4})")
|
||||
|
||||
# number of tokens to keep when resetting context
|
||||
if (self.params.n_keep < 0 or self.params.n_keep > len(self.embd_inp) or self.params.instruct):
|
||||
self.params.n_keep = len(self.embd_inp)
|
||||
|
||||
self.inp_prefix = self._tokenize(self.params.instruct_inp_prefix)
|
||||
self.inp_suffix = self._tokenize(self.params.instruct_inp_suffix, False)
|
||||
|
||||
# in instruct mode, we inject a prefix and a suffix to each input by the user
|
||||
if (self.params.instruct):
|
||||
self.params.interactive_start = True
|
||||
self.first_antiprompt.append(self._tokenize(self.params.instruct_inp_prefix.strip(), False))
|
||||
|
||||
# enable interactive mode if reverse prompt or interactive start is specified
|
||||
if (len(self.params.antiprompt) != 0 or self.params.interactive_start):
|
||||
self.params.interactive = True
|
||||
|
||||
# determine newline token
|
||||
self.llama_token_newline = self._tokenize("\n", False)
|
||||
|
||||
if (self.params.verbose_prompt):
|
||||
print(f"""
|
||||
prompt: '{self.params.prompt}'
|
||||
number of tokens in prompt = {len(self.embd_inp)}""", file=sys.stderr)
|
||||
|
||||
for i in range(len(self.embd_inp)):
|
||||
print(f"{self.embd_inp[i]} -> '{llama_cpp.llama_token_to_str(self.ctx, self.embd_inp[i])}'", file=sys.stderr)
|
||||
|
||||
if (self.params.n_keep > 0):
|
||||
print("static prompt based on n_keep: '")
|
||||
for i in range(self.params.n_keep):
|
||||
print(llama_cpp.llama_token_to_str(self.ctx, self.embd_inp[i]), file=sys.stderr)
|
||||
print("'", file=sys.stderr)
|
||||
print(file=sys.stderr)
|
||||
|
||||
if (self.params.interactive):
|
||||
print("interactive mode on.", file=sys.stderr)
|
||||
|
||||
if (len(self.params.antiprompt) > 0):
|
||||
for antiprompt in self.params.antiprompt:
|
||||
print(f"Reverse prompt: '{antiprompt}'", file=sys.stderr)
|
||||
|
||||
if len(self.params.input_prefix) > 0:
|
||||
print(f"Input prefix: '{self.params.input_prefix}'", file=sys.stderr)
|
||||
|
||||
print(f"""sampling: temp = {self.params.temp},\
|
||||
top_k = {self.params.top_k},\
|
||||
top_p = {self.params.top_p},\
|
||||
repeat_last_n = {self.params.repeat_last_n},\
|
||||
repeat_penalty = {self.params.repeat_penalty}
|
||||
|
||||
generate: n_ctx = {self.n_ctx}, \
|
||||
n_batch = {self.params.n_batch}, \
|
||||
n_predict = {self.params.n_predict}, \
|
||||
n_keep = {self.params.n_keep}
|
||||
""", file=sys.stderr)
|
||||
|
||||
# determine antiprompt tokens
|
||||
for i in self.params.antiprompt:
|
||||
self.first_antiprompt.append(self._tokenize(i, False))
|
||||
|
||||
self.last_n_tokens = [0]*self.n_ctx #TODO: deque doesnt support slices
|
||||
|
||||
if (params.interactive):
|
||||
print("""== Running in interactive mode. ==
|
||||
- Press Ctrl+C to interject at any time.
|
||||
- Press Return to return control to LLaMa.
|
||||
- If you want to submit another line, end your input in '\\'.
|
||||
|
||||
""", file=sys.stderr)
|
||||
self.set_color(CONSOLE_COLOR_PROMPT)
|
||||
|
||||
# tokenize a prompt
|
||||
def _tokenize(self, prompt, bos=True):
|
||||
_arr = (llama_cpp.llama_token * (len(prompt) + 1))()
|
||||
_n = llama_cpp.llama_tokenize(self.ctx, prompt.encode("utf8"), _arr, len(_arr), bos)
|
||||
return _arr[:_n]
|
||||
|
||||
def use_antiprompt(self):
|
||||
return len(self.first_antiprompt) > 0
|
||||
|
||||
def set_color(self, c):
|
||||
if (self.params.use_color):
|
||||
print(c, end="")
|
||||
|
||||
# generate tokens
|
||||
def generate(self):
|
||||
while self.remaining_tokens > 0 or self.params.interactive:
|
||||
# predict
|
||||
if len(self.embd) > 0:
|
||||
# infinite text generation via context swapping
|
||||
# if we run out of context:
|
||||
# - take the n_keep first tokens from the original prompt (via n_past)
|
||||
# - take half of the last (n_ctx - n_keep) tokens and recompute the logits in a batch
|
||||
if (self.n_past + len(self.embd) > self.n_ctx):
|
||||
n_left = self.n_past - self.params.n_keep
|
||||
self.n_past = self.params.n_keep
|
||||
|
||||
# insert n_left/2 tokens at the start of embd from last_n_tokens
|
||||
_insert = self.last_n_tokens[
|
||||
self.n_ctx - int(n_left/2) - len(self.embd):-len(self.embd)
|
||||
]
|
||||
self.embd = _insert + self.embd
|
||||
|
||||
if (llama_cpp.llama_eval(
|
||||
self.ctx, (llama_cpp.llama_token * len(self.embd))(*self.embd), len(self.embd), self.n_past, self.params.n_threads
|
||||
) != 0):
|
||||
raise Exception("Failed to llama_eval!")
|
||||
|
||||
self.n_past += len(self.embd)
|
||||
self.embd = []
|
||||
if len(self.embd_inp) <= self.input_consumed:
|
||||
# out of user input, sample next token
|
||||
|
||||
#TODO: self.params.ignore_eos
|
||||
|
||||
_arr = self.last_n_tokens[-min(self.params.repeat_last_n, self.n_past):]
|
||||
id = llama_cpp.llama_sample_top_p_top_k(
|
||||
self.ctx,
|
||||
(llama_cpp.llama_token * len(_arr))(*_arr),
|
||||
len(_arr),
|
||||
self.params.top_k,
|
||||
self.params.top_p,
|
||||
self.params.temp,
|
||||
self.params.repeat_penalty,
|
||||
)
|
||||
self.last_n_tokens.pop(0)
|
||||
self.last_n_tokens.append(id)
|
||||
|
||||
# replace end of text token with newline token when in interactive mode
|
||||
if (id == llama_cpp.llama_token_eos() and self.params.interactive and not self.params.instruct):
|
||||
id = self.llama_token_newline[0]
|
||||
if (self.use_antiprompt()):
|
||||
# tokenize and inject first reverse prompt
|
||||
self.embd_inp += self.first_antiprompt[0]
|
||||
|
||||
# add it to the context
|
||||
self.embd.append(id)
|
||||
|
||||
# echo this to console
|
||||
self.output_echo = True
|
||||
|
||||
# decrement remaining sampling budget
|
||||
self.remaining_tokens -= 1
|
||||
else:
|
||||
# output to console if input echo is on
|
||||
self.output_echo = self.params.input_echo
|
||||
|
||||
# some user input remains from prompt or interaction, forward it to processing
|
||||
while len(self.embd_inp) > self.input_consumed:
|
||||
self.embd.append(self.embd_inp[self.input_consumed])
|
||||
self.last_n_tokens.pop(0)
|
||||
self.last_n_tokens.append(self.embd_inp[self.input_consumed])
|
||||
self.input_consumed += 1
|
||||
if len(self.embd) >= self.params.n_batch:
|
||||
break
|
||||
|
||||
# display tokens
|
||||
if self.output_echo:
|
||||
for id in self.embd:
|
||||
yield id
|
||||
|
||||
# reset color to default if we there is no pending user input
|
||||
if (self.params.input_echo and len(self.embd_inp) == self.input_consumed):
|
||||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||||
|
||||
if (self.params.interactive and len(self.embd_inp) <= self.input_consumed):
|
||||
# if antiprompt is present, stop
|
||||
if (self.use_antiprompt()):
|
||||
if True in [
|
||||
i == self.last_n_tokens[-len(i):]
|
||||
for i in self.first_antiprompt
|
||||
]:
|
||||
break
|
||||
|
||||
# if we are using instruction mode, and we have processed the initial prompt
|
||||
if (self.n_past > 0 and self.params.interactive_start):
|
||||
break
|
||||
|
||||
# end of text token
|
||||
if len(self.embd) > 0 and self.embd[-1] == llama_cpp.llama_token_eos():
|
||||
if (not self.params.instruct):
|
||||
for i in " [end of text]\n":
|
||||
yield i
|
||||
break
|
||||
|
||||
# respect n_predict even if antiprompt is present
|
||||
if (self.params.interactive and self.remaining_tokens <= 0 and self.params.n_predict != -1):
|
||||
# If we arent in instruction mode, fix the current generation by appending the antiprompt.
|
||||
# Makes it so if chat ends prematurely you dont append the AI's text etc.
|
||||
if not self.params.instruct:
|
||||
self.embd_inp += self.first_antiprompt[0]
|
||||
self.n_remain = self.params.n_predict
|
||||
break
|
||||
|
||||
self.params.interactive_start = False
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, type, value, tb):
|
||||
self.exit()
|
||||
|
||||
def exit(self):
|
||||
llama_cpp.llama_free(self.ctx)
|
||||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||||
|
||||
# return past text
|
||||
def past(self):
|
||||
for id in self.last_n_tokens[-self.n_past:]:
|
||||
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
|
||||
|
||||
# write input
|
||||
def input(self, prompt: str):
|
||||
if (self.params.instruct and self.last_n_tokens[-len(self.inp_prefix):] != self.inp_prefix):
|
||||
self.embd_inp += self.inp_prefix
|
||||
self.embd_inp += self._tokenize(prompt)
|
||||
if (self.params.instruct):
|
||||
self.embd_inp += self.inp_suffix
|
||||
|
||||
# write output
|
||||
def output(self):
|
||||
self.remaining_tokens = self.params.n_predict
|
||||
for id in self.generate():
|
||||
yield llama_cpp.llama_token_to_str(self.ctx, id).decode("utf-8")
|
||||
|
||||
# read user input
|
||||
def read_input(self):
|
||||
out = ""
|
||||
while (t := input()).endswith("\\"):
|
||||
out += t[:-1] + "\n"
|
||||
return out + t + "\n"
|
||||
|
||||
# interactive mode
|
||||
def interact(self):
|
||||
for i in self.output():
|
||||
print(i,end="",flush=True)
|
||||
self.params.input_echo = False
|
||||
|
||||
while self.params.interactive:
|
||||
self.set_color(CONSOLE_COLOR_USER_INPUT)
|
||||
if (self.params.instruct):
|
||||
print('\n> ', end="")
|
||||
self.input(self.read_input())
|
||||
else:
|
||||
print(self.params.input_prefix, end="")
|
||||
self.input(f"{self.params.input_prefix}{self.read_input()}{self.params.output_postfix}")
|
||||
print(self.params.output_postfix,end="")
|
||||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||||
|
||||
try:
|
||||
for i in self.output():
|
||||
print(i,end="",flush=True)
|
||||
except KeyboardInterrupt:
|
||||
self.set_color(CONSOLE_COLOR_DEFAULT)
|
||||
if not self.params.instruct:
|
||||
print(self.params.fix_prefix,end="")
|
||||
self.input(self.params.fix_prefix)
|
||||
|
||||
if __name__ == "__main__":
|
||||
from datetime import datetime
|
||||
|
||||
USER_NAME="User"
|
||||
AI_NAME="ChatLLaMa"
|
||||
|
||||
time_now = datetime.now()
|
||||
prompt = f"""Text transcript of a never ending dialog, where {USER_NAME} interacts with an AI assistant named {AI_NAME}.
|
||||
{AI_NAME} is helpful, kind, honest, friendly, good at writing and never fails to answer {USER_NAME}’s requests immediately and with details and precision.
|
||||
There are no annotations like (30 seconds passed...) or (to himself), just what {USER_NAME} and {AI_NAME} say aloud to each other.
|
||||
The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long.
|
||||
The transcript only includes text, it does not include markup like HTML and Markdown.
|
||||
|
||||
{USER_NAME}: Hello, {AI_NAME}!
|
||||
{AI_NAME}: Hello {USER_NAME}! How may I help you today?
|
||||
{USER_NAME}: What time is it?
|
||||
{AI_NAME}: It is {time_now.strftime("%H:%M")}.
|
||||
{USER_NAME}: What year is it?
|
||||
{AI_NAME}: We are in {time_now.strftime("%Y")}.
|
||||
{USER_NAME}: What is a cat?
|
||||
{AI_NAME}: A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae.
|
||||
{USER_NAME}: Name a color.
|
||||
{AI_NAME}: Blue
|
||||
{USER_NAME}:"""
|
||||
args = gpt_params_parse()
|
||||
params = GptParams(**vars(args))
|
||||
|
||||
with LLaMAInteract(params) as m:
|
||||
m.interact()
|
Loading…
Reference in a new issue