Merge pull request from abetlen/v0.2-wip

llama-cpp-python v0.2.0
This commit is contained in:
Andrei 2023-09-12 19:04:18 -04:00 committed by GitHub
commit 3feeafed1a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
22 changed files with 240 additions and 2017 deletions

View file

@ -26,7 +26,8 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools
python -m pip install --upgrade pip
python -m pip install -e .[all]
- name: Build wheels
run: python -m cibuildwheel --output-dir wheelhouse
@ -46,10 +47,11 @@ jobs:
- uses: actions/setup-python@v3
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools
python -m pip install --upgrade pip build
python -m pip install -e .[all]
- name: Build source distribution
run: |
python setup.py sdist
python -m build --sdist
- uses: actions/upload-artifact@v3
with:
path: ./dist/*.tar.gz

View file

@ -19,10 +19,11 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools
python3 -m pip install --upgrade pip build
python3 -m pip install -e .[all]
- name: Build source distribution
run: |
python setup.py sdist
python3 -m build --sdist
- name: Publish to Test PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:

View file

@ -19,10 +19,11 @@ jobs:
python-version: "3.8"
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools
python3 -m pip install --upgrade pip build
python3 -m pip install -e .[all]
- name: Build source distribution
run: |
python setup.py sdist
python3 -m build --sdist
- name: Publish distribution to PyPI
# TODO: move to tag based releases
# if: startsWith(github.ref, 'refs/tags')

View file

@ -18,7 +18,7 @@ jobs:
- name: Install dependencies
run: |
python3 -m pip install --upgrade pip
python3 -m pip install --verbose llama-cpp-python[server,test]
python3 -m pip install --verbose llama-cpp-python[all]
- name: Test with pytest
run: |
python3 -c "import llama_cpp"
@ -38,7 +38,7 @@ jobs:
- name: Install dependencies
run: |
python3 -m pip install --upgrade pip
python3 -m pip install --verbose llama-cpp-python[server,test]
python3 -m pip install --verbose llama-cpp-python[all]
- name: Test with pytest
run: |
python3 -c "import llama_cpp"
@ -58,7 +58,7 @@ jobs:
- name: Install dependencies
run: |
python3 -m pip install --upgrade pip
python3 -m pip install --verbose llama-cpp-python[server,test]
python3 -m pip install --verbose llama-cpp-python[all]
- name: Test with pytest
run: |
python3 -c "import llama_cpp"

View file

@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v3
@ -26,18 +26,18 @@ jobs:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi sse-starlette httpx uvicorn pydantic-settings
pip install . -v
python3 -m pip install --upgrade pip
python3 -m pip install .[all] -v
- name: Test with pytest
run: |
pytest
python3 -m pytest
build-windows:
runs-on: windows-latest
strategy:
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v3
@ -49,18 +49,18 @@ jobs:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi sse-starlette httpx uvicorn pydantic-settings
pip install . -v
python3 -m pip install --upgrade pip
python3 -m pip install .[all] -v
- name: Test with pytest
run: |
pytest
python3 -m pytest
build-macos:
runs-on: macos-latest
strategy:
matrix:
python-version: ["3.7", "3.8", "3.9", "3.10", "3.11"]
python-version: ["3.8", "3.9", "3.10", "3.11"]
steps:
- uses: actions/checkout@v3
@ -72,8 +72,8 @@ jobs:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi sse-starlette httpx uvicorn pydantic-settings
pip install . -v
python3 -m pip install --upgrade pip
python3 -m pip install .[all] --verbose
- name: Test with pytest
run: |
pytest
python3 -m pytest

View file

@ -2,33 +2,37 @@ cmake_minimum_required(VERSION 3.4...3.22)
project(llama_cpp)
option(FORCE_CMAKE "Force CMake build of Python bindings" OFF)
option(LLAMA_BUILD "Build llama.cpp shared library and install alongside python package" ON)
set(FORCE_CMAKE $ENV{FORCE_CMAKE})
if (UNIX AND NOT FORCE_CMAKE)
add_custom_command(
OUTPUT ${CMAKE_CURRENT_SOURCE_DIR}/vendor/llama.cpp/libllama.so
COMMAND make libllama.so
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/vendor/llama.cpp
)
add_custom_target(
run ALL
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/vendor/llama.cpp/libllama.so
)
install(
FILES ${CMAKE_CURRENT_SOURCE_DIR}/vendor/llama.cpp/libllama.so
DESTINATION llama_cpp
)
else()
if (LLAMA_BUILD)
set(BUILD_SHARED_LIBS "On")
if (APPLE)
# Need to disable these llama.cpp flags on Apple
# otherwise users may encounter invalid instruction errors
set(LLAMA_AVX "Off" CACHE BOOL "llama: enable AVX" FORCE)
set(LLAMA_AVX2 "Off" CACHE BOOL "llama: enable AVX2" FORCE)
set(LLAMA_FMA "Off" CACHE BOOL "llama: enable FMA" FORCE)
set(LLAMA_F16C "Off" CACHE BOOL "llama: enable F16C" FORCE)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -march=native -mtune=native")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=native -mtune=native")
endif()
add_subdirectory(vendor/llama.cpp)
install(
TARGETS llama
LIBRARY DESTINATION llama_cpp
RUNTIME DESTINATION llama_cpp
ARCHIVE DESTINATION llama_cpp
FRAMEWORK DESTINATION llama_cpp
RESOURCE DESTINATION llama_cpp
LIBRARY DESTINATION ${SKBUILD_PLATLIB_DIR}/llama_cpp
RUNTIME DESTINATION ${SKBUILD_PLATLIB_DIR}/llama_cpp
ARCHIVE DESTINATION ${SKBUILD_PLATLIB_DIR}/llama_cpp
FRAMEWORK DESTINATION ${SKBUILD_PLATLIB_DIR}/llama_cpp
RESOURCE DESTINATION ${SKBUILD_PLATLIB_DIR}/llama_cpp
)
# Temporary fix for https://github.com/scikit-build/scikit-build-core/issues/374
install(
TARGETS llama
LIBRARY DESTINATION ${CMAKE_CURRENT_SOURCE_DIR}/llama_cpp
RUNTIME DESTINATION ${CMAKE_CURRENT_SOURCE_DIR}/llama_cpp
ARCHIVE DESTINATION ${CMAKE_CURRENT_SOURCE_DIR}/llama_cpp
FRAMEWORK DESTINATION ${CMAKE_CURRENT_SOURCE_DIR}/llama_cpp
RESOURCE DESTINATION ${CMAKE_CURRENT_SOURCE_DIR}/llama_cpp
)
endif()

View file

@ -5,26 +5,30 @@ update:
update.vendor:
cd vendor/llama.cpp && git pull origin master
deps:
python3 -m pip install pip
python3 -m pip install -e ".[all]"
build:
python3 setup.py develop
python3 -m pip install -e .
build.cuda:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 python3 setup.py develop
CMAKE_ARGS="-DLLAMA_CUBLAS=on" python3 -m pip install -e .
build.opencl:
CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 python3 setup.py develop
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install -e .
build.openblas:
CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 python3 setup.py develop
CMAKE_ARGS="-DLLAMA_CLBLAST=on" python3 -m pip install -e .
build.blis:
CMAKE_ARGS="-DLLAMA_OPENBLAS=on -DLLAMA_OPENBLAS_VENDOR=blis" FORCE_CMAKE=1 python3 setup.py develop
CMAKE_ARGS="-DLLAMA_OPENBLAS=on -DLLAMA_OPENBLAS_VENDOR=blis" python3 -m pip install -e .
build.metal:
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 python3 setup.py develop
CMAKE_ARGS="-DLLAMA_METAL=on" python3 -m pip install -e .
build.sdist:
python3 setup.py sdist
python3 -m build --sdist
deploy.pypi:
python3 -m twine upload dist/*

View file

@ -1,4 +1,4 @@
# 🦙 Python Bindings for `llama.cpp`
# 🦙 Python Bindings for [`llama.cpp`](https://github.com/ggerganov/llama.cpp)
[![Documentation Status](https://readthedocs.org/projects/llama-cpp-python/badge/?version=latest)](https://llama-cpp-python.readthedocs.io/en/latest/?badge=latest)
[![Tests](https://github.com/abetlen/llama-cpp-python/actions/workflows/test.yaml/badge.svg?branch=main)](https://github.com/abetlen/llama-cpp-python/actions/workflows/test.yaml)
@ -48,7 +48,6 @@ Otherwise, while installing it will build the llama.ccp x86 version which will b
### Installation with Hardware Acceleration
`llama.cpp` supports multiple BLAS backends for faster processing.
Use the `FORCE_CMAKE=1` environment variable to force the use of `cmake` and install the pip package for the desired BLAS backend.
To install with OpenBLAS, set the `LLAMA_BLAS and LLAMA_BLAS_VENDOR` environment variables before installing:
@ -208,24 +207,26 @@ If you find any issues with the documentation, please open an issue or submit a
This package is under active development and I welcome any contributions.
To get started, clone the repository and install the package in development mode:
To get started, clone the repository and install the package in editable / development mode:
```bash
git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git
cd llama-cpp-python
# Upgrade pip (required for editable mode)
pip install --upgrade pip
# Install with pip
pip install -e .
# if you want to use the fastapi / openapi server
pip install -e .[server]
# If you're a poetry user, installing will also include a virtual environment
poetry install --all-extras
. .venv/bin/activate
# to install all optional dependencies
pip install -e .[all]
# Will need to be re-run any time vendor/llama.cpp is updated
python3 setup.py develop
# to clear the local build cache
make clean
```
# How does this compare to other Python bindings of `llama.cpp`?

View file

@ -21,7 +21,7 @@ ENV LLAMA_CUBLAS=1
RUN python3 -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings
# Install llama-cpp-python (build with cuda)
RUN CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
RUN CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Run the server
CMD python3 -m llama_cpp.server

View file

@ -19,9 +19,9 @@ RUN mkdir /app
WORKDIR /app
COPY . /app
RUN python3 -m pip install --upgrade pip pytest cmake scikit-build setuptools fastapi uvicorn sse-starlette pydantic-settings
RUN python3 -m pip install --upgrade pip
RUN make build && make clean
RUN make deps && make build && make clean
# Set environment variable for the host
ENV HOST=0.0.0.0

View file

@ -82,9 +82,12 @@ To get started, clone the repository and install the package in development mode
```bash
git clone git@github.com:abetlen/llama-cpp-python.git
cd llama-cpp-python
git submodule update --init --recursive
# Will need to be re-run any time vendor/llama.cpp is updated
python3 setup.py develop
pip install --upgrade pip
pip install -e .[all]
```
## License

View file

@ -30,7 +30,7 @@ conda activate llama
*(you needed xcode installed in order pip to build/compile the C++ code)*
```
pip uninstall llama-cpp-python -y
CMAKE_ARGS="-DLLAMA_METAL=on" FORCE_CMAKE=1 pip install -U llama-cpp-python --no-cache-dir
CMAKE_ARGS="-DLLAMA_METAL=on" pip install -U llama-cpp-python --no-cache-dir
pip install 'llama-cpp-python[server]'
# you should now have llama-cpp-python v0.1.62 or higher installed

View file

@ -1,4 +1,4 @@
from .llama_cpp import *
from .llama import *
from .version import __version__
__version__ = "0.2.0"

View file

@ -182,21 +182,27 @@ class LlamaState:
self.llama_state_size = llama_state_size
LogitsProcessor = Callable[[List[int], List[float]], List[float]]
LogitsProcessor = Callable[
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
]
class LogitsProcessorList(List[LogitsProcessor]):
def __call__(self, input_ids: List[int], scores: List[float]) -> List[float]:
def __call__(
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
) -> npt.NDArray[np.single]:
for processor in self:
scores = processor(input_ids, scores)
return scores
StoppingCriteria = Callable[[List[int], List[float]], bool]
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
class StoppingCriteriaList(List[StoppingCriteria]):
def __call__(self, input_ids: List[int], logits: List[float]) -> bool:
def __call__(
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
) -> bool:
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
@ -281,11 +287,12 @@ class Llama:
self._p_tensor_split = None
if self.tensor_split is not None:
FloatArray = (ctypes.c_float * len(self.tensor_split))(*self.tensor_split)
self._p_tensor_split = ctypes.POINTER(ctypes.c_float)(
FloatArray
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES.value
self._c_tensor_split = FloatArray(
*tensor_split
) # keep a reference to the array so it is not gc'd
self.params.tensor_split = self._p_tensor_split
self.params.tensor_split = self._c_tensor_split
self.params.rope_freq_base = rope_freq_base
self.params.rope_freq_scale = rope_freq_scale
@ -535,11 +542,7 @@ class Llama:
logits: npt.NDArray[np.single] = self._scores[-1, :]
if logits_processor is not None:
logits = np.array(
logits_processor(self._input_ids.tolist(), logits.tolist()),
dtype=np.single,
)
self._scores[-1, :] = logits
logits[:] = logits_processor(self._input_ids, logits)
nl_logit = logits[self._token_nl]
candidates = self._candidates
@ -778,7 +781,7 @@ class Llama:
grammar=grammar,
)
if stopping_criteria is not None and stopping_criteria(
self._input_ids.tolist(), self._scores[-1, :].tolist()
self._input_ids, self._scores[-1, :]
):
return
tokens_or_none = yield token
@ -1105,7 +1108,7 @@ class Llama:
break
if stopping_criteria is not None and stopping_criteria(
self._input_ids.tolist(), self._scores[-1, :].tolist()
self._input_ids, self._scores[-1, :]
):
text = self.detokenize(completion_tokens)
finish_reason = "stop"
@ -1525,6 +1528,8 @@ class Llama:
def create_chat_completion(
self,
messages: List[ChatCompletionMessage],
functions: Optional[List[ChatCompletionFunction]] = None,
function_call: Optional[Union[str, ChatCompletionFunctionCall]] = None,
temperature: float = 0.2,
top_p: float = 0.95,
top_k: int = 40,

View file

@ -87,8 +87,8 @@ c_size_t_p = POINTER(c_size_t)
# llama.h bindings
GGML_USE_CUBLAS = hasattr(_lib, "ggml_init_cublas")
GGML_CUDA_MAX_DEVICES = ctypes.c_int(16)
LLAMA_MAX_DEVICES = GGML_CUDA_MAX_DEVICES if GGML_USE_CUBLAS else ctypes.c_int(1)
GGML_CUDA_MAX_DEVICES = 16
LLAMA_MAX_DEVICES = GGML_CUDA_MAX_DEVICES if GGML_USE_CUBLAS else 1
# define LLAMA_DEFAULT_SEED 0xFFFFFFFF
LLAMA_DEFAULT_SEED = ctypes.c_int(0xFFFFFFFF)
@ -335,13 +335,13 @@ llama_grammar_p = c_void_p
# // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
# LLAMA_GRETYPE_CHAR_ALT = 6,
# };
LLAMA_GRETYPE_END = c_int(0)
LLAMA_GRETYPE_ALT = c_int(1)
LLAMA_GRETYPE_RULE_REF = c_int(2)
LLAMA_GRETYPE_CHAR = c_int(3)
LLAMA_GRETYPE_CHAR_NOT = c_int(4)
LLAMA_GRETYPE_CHAR_RNG_UPPER = c_int(5)
LLAMA_GRETYPE_CHAR_ALT = c_int(6)
LLAMA_GRETYPE_END = 0
LLAMA_GRETYPE_ALT = 1
LLAMA_GRETYPE_RULE_REF = 2
LLAMA_GRETYPE_CHAR = 3
LLAMA_GRETYPE_CHAR_NOT = 4
LLAMA_GRETYPE_CHAR_RNG_UPPER = 5
LLAMA_GRETYPE_CHAR_ALT = 6
# typedef struct llama_grammar_element {
@ -407,7 +407,7 @@ _lib.llama_model_quantize_default_params.restype = llama_model_quantize_params
# // If numa is true, use NUMA optimizations
# // Call once at the start of the program
# LLAMA_API void llama_backend_init(bool numa);
def llama_backend_init(numa: c_bool):
def llama_backend_init(numa: Union[c_bool, bool]):
return _lib.llama_backend_init(numa)
@ -651,9 +651,9 @@ _lib.llama_model_quantize.restype = c_int
# int n_threads);
def llama_apply_lora_from_file(
ctx: llama_context_p,
path_lora: c_char_p,
path_base_model: c_char_p,
n_threads: c_int,
path_lora: Union[c_char_p, bytes],
path_base_model: Union[c_char_p, bytes],
n_threads: Union[c_int, int],
) -> int:
return _lib.llama_apply_lora_from_file(ctx, path_lora, path_base_model, n_threads)
@ -671,7 +671,7 @@ def llama_model_apply_lora_from_file(
model: llama_model_p,
path_lora: Union[c_char_p, bytes],
path_base_model: Union[c_char_p, bytes],
n_threads: c_int,
n_threads: Union[c_int, int],
) -> int:
return _lib.llama_model_apply_lora_from_file(
model, path_lora, path_base_model, n_threads
@ -751,7 +751,7 @@ def llama_load_session_file(
ctx: llama_context_p,
path_session: bytes,
tokens_out, # type: Array[llama_token]
n_token_capacity: c_size_t,
n_token_capacity: Union[c_size_t, int],
n_token_count_out, # type: _Pointer[c_size_t]
) -> int:
return _lib.llama_load_session_file(
@ -774,7 +774,7 @@ def llama_save_session_file(
ctx: llama_context_p,
path_session: bytes,
tokens, # type: Array[llama_token]
n_token_count: c_size_t,
n_token_count: Union[c_size_t, int],
) -> int:
return _lib.llama_save_session_file(ctx, path_session, tokens, n_token_count)
@ -801,9 +801,9 @@ _lib.llama_save_session_file.restype = c_size_t
def llama_eval(
ctx: llama_context_p,
tokens, # type: Array[llama_token]
n_tokens: c_int,
n_past: c_int,
n_threads: c_int,
n_tokens: Union[c_int, int],
n_past: Union[c_int, int],
n_threads: Union[c_int, int],
) -> int:
return _lib.llama_eval(ctx, tokens, n_tokens, n_past, n_threads)
@ -822,9 +822,9 @@ _lib.llama_eval.restype = c_int
def llama_eval_embd(
ctx: llama_context_p,
embd, # type: Array[c_float]
n_tokens: c_int,
n_past: c_int,
n_threads: c_int,
n_tokens: Union[c_int, int],
n_past: Union[c_int, int],
n_threads: Union[c_int, int],
) -> int:
return _lib.llama_eval_embd(ctx, embd, n_tokens, n_past, n_threads)
@ -1042,8 +1042,8 @@ _lib.llama_token_to_piece_with_model.restype = c_int
# size_t start_rule_index);
def llama_grammar_init(
rules, # type: Array[llama_grammar_element_p] # type: ignore
n_rules: c_size_t,
start_rule_index: c_size_t,
n_rules: Union[c_size_t, int],
start_rule_index: Union[c_size_t, int],
) -> llama_grammar_p:
return _lib.llama_grammar_init(rules, n_rules, start_rule_index)
@ -1084,8 +1084,8 @@ def llama_sample_repetition_penalty(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
last_tokens_data, # type: Array[llama_token]
last_tokens_size: c_int,
penalty: c_float,
last_tokens_size: Union[c_int, int],
penalty: Union[c_float, float],
):
return _lib.llama_sample_repetition_penalty(
ctx, candidates, last_tokens_data, last_tokens_size, penalty
@ -1108,9 +1108,9 @@ def llama_sample_frequency_and_presence_penalties(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
last_tokens_data, # type: Array[llama_token]
last_tokens_size: c_int,
alpha_frequency: c_float,
alpha_presence: c_float,
last_tokens_size: Union[c_int, int],
alpha_frequency: Union[c_float, float],
alpha_presence: Union[c_float, float],
):
return _lib.llama_sample_frequency_and_presence_penalties(
ctx,
@ -1146,7 +1146,7 @@ def llama_sample_classifier_free_guidance(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
guidance_ctx: llama_context_p,
scale: c_float,
scale: Union[c_float, float],
):
return _lib.llama_sample_classifier_free_guidance(
ctx, candidates, guidance_ctx, scale
@ -1182,8 +1182,8 @@ _lib.llama_sample_softmax.restype = None
def llama_sample_top_k(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
k: c_int,
min_keep: c_size_t,
k: Union[c_int, int],
min_keep: Union[c_size_t, int],
):
return _lib.llama_sample_top_k(ctx, candidates, k, min_keep)
@ -1202,8 +1202,8 @@ _lib.llama_sample_top_k.restype = None
def llama_sample_top_p(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
p: c_float,
min_keep: c_size_t,
p: Union[c_float, float],
min_keep: Union[c_size_t, int],
):
return _lib.llama_sample_top_p(ctx, candidates, p, min_keep)
@ -1222,8 +1222,8 @@ _lib.llama_sample_top_p.restype = None
def llama_sample_tail_free(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
z: c_float,
min_keep: c_size_t,
z: Union[c_float, float],
min_keep: Union[c_size_t, int],
):
return _lib.llama_sample_tail_free(ctx, candidates, z, min_keep)
@ -1242,8 +1242,8 @@ _lib.llama_sample_tail_free.restype = None
def llama_sample_typical(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
p: c_float,
min_keep: c_size_t,
p: Union[c_float, float],
min_keep: Union[c_size_t, int],
):
return _lib.llama_sample_typical(ctx, candidates, p, min_keep)
@ -1261,7 +1261,7 @@ _lib.llama_sample_typical.restype = None
def llama_sample_temperature(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
temp: c_float,
temp: Union[c_float, float],
):
return _lib.llama_sample_temperature(ctx, candidates, temp)
@ -1301,9 +1301,9 @@ _lib.llama_sample_grammar.restype = None
def llama_sample_token_mirostat(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
tau: c_float,
eta: c_float,
m: c_int,
tau: Union[c_float, float],
eta: Union[c_float, float],
m: Union[c_int, int],
mu, # type: _Pointer[c_float]
) -> int:
return _lib.llama_sample_token_mirostat(ctx, candidates, tau, eta, m, mu)
@ -1329,8 +1329,8 @@ _lib.llama_sample_token_mirostat.restype = llama_token
def llama_sample_token_mirostat_v2(
ctx: llama_context_p,
candidates, # type: _Pointer[llama_token_data_array]
tau: c_float,
eta: c_float,
tau: Union[c_float, float],
eta: Union[c_float, float],
mu, # type: _Pointer[c_float]
) -> int:
return _lib.llama_sample_token_mirostat_v2(ctx, candidates, tau, eta, mu)
@ -1531,5 +1531,5 @@ _lib.llama_dump_timing_info_yaml.restype = None
_llama_initialized = False
if not _llama_initialized:
llama_backend_init(c_bool(False))
llama_backend_init(False)
_llama_initialized = True

View file

@ -63,6 +63,16 @@ class ChatCompletionMessage(TypedDict):
user: NotRequired[str]
class ChatCompletionFunction(TypedDict):
name: str
description: NotRequired[str]
parameters: Dict[str, Any] # TODO: make this more specific
class ChatCompletionFunctionCall(TypedDict):
name: str
class ChatCompletionChoice(TypedDict):
index: int
message: ChatCompletionMessage
@ -77,9 +87,11 @@ class ChatCompletion(TypedDict):
choices: List[ChatCompletionChoice]
usage: CompletionUsage
class ChatCompletionChunkDeltaEmpty(TypedDict):
pass
class ChatCompletionChunkDelta(TypedDict):
role: NotRequired[Literal["assistant"]]
content: NotRequired[str]

View file

@ -19,6 +19,9 @@ from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings
from sse_starlette.sse import EventSourceResponse
import numpy as np
import numpy.typing as npt
class Settings(BaseSettings):
model: str = Field(
@ -38,11 +41,13 @@ class Settings(BaseSettings):
default=None,
description="Split layers across multiple GPUs in proportion.",
)
rope_freq_base: float = Field(default=10000, ge=1, description="RoPE base frequency")
rope_freq_scale: float = Field(default=1.0, description="RoPE frequency scaling factor")
seed: int = Field(
default=1337, description="Random seed. -1 for random."
rope_freq_base: float = Field(
default=10000, ge=1, description="RoPE base frequency"
)
rope_freq_scale: float = Field(
default=1.0, description="RoPE frequency scaling factor"
)
seed: int = Field(default=1337, description="Random seed. -1 for random.")
n_batch: int = Field(
default=512, ge=1, description="The batch size to use per eval."
)
@ -559,9 +564,9 @@ def make_logit_bias_processor(
to_bias[input_id] = score
def logit_bias_processor(
input_ids: List[int],
scores: List[float],
) -> List[float]:
input_ids: npt.NDArray[np.intc],
scores: npt.NDArray[np.single],
) -> npt.NDArray[np.single]:
new_scores = [None] * len(scores)
for input_id, score in enumerate(scores):
new_scores[input_id] = score + to_bias.get(input_id, 0.0)
@ -594,9 +599,11 @@ async def create_completion(
kwargs = body.model_dump(exclude=exclude)
if body.logit_bias is not None:
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
])
kwargs["logits_processor"] = llama_cpp.LogitsProcessorList(
[
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
]
)
iterator_or_completion: Union[llama_cpp.Completion, Iterator[
llama_cpp.CompletionChunk
@ -663,6 +670,14 @@ class CreateChatCompletionRequest(BaseModel):
messages: List[ChatCompletionRequestMessage] = Field(
default=[], description="A list of messages to generate completions for."
)
functions: Optional[List[llama_cpp.ChatCompletionFunction]] = Field(
default=None,
description="A list of functions to apply to the generated completions.",
)
function_call: Optional[Union[str, llama_cpp.ChatCompletionFunctionCall]] = Field(
default=None,
description="A function to apply to the generated completions.",
)
max_tokens: int = max_tokens_field
temperature: float = temperature_field
top_p: float = top_p_field
@ -721,9 +736,11 @@ async def create_chat_completion(
kwargs = body.model_dump(exclude=exclude)
if body.logit_bias is not None:
kwargs['logits_processor'] = llama_cpp.LogitsProcessorList([
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
])
kwargs["logits_processor"] = llama_cpp.LogitsProcessorList(
[
make_logit_bias_processor(llama, body.logit_bias, body.logit_bias_type),
]
)
iterator_or_completion: Union[llama_cpp.ChatCompletion, Iterator[
llama_cpp.ChatCompletionChunk

View file

@ -1 +0,0 @@
__version__ = "0.1.85"

1803
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -1,3 +0,0 @@
[virtualenvs]
in-project = true
prefer-active-python = true

View file

@ -1,48 +1,63 @@
[tool.poetry]
[build-system]
requires = ["scikit-build-core>=0.5.0"]
build-backend = "scikit_build_core.build"
[project]
name = "llama_cpp_python"
version = "0.1.85"
dynamic = ["version"]
description = "Python bindings for the llama.cpp library"
authors = ["Andrei Betlen <abetlen@gmail.com>"]
license = "MIT"
readme = "README.md"
homepage = "https://github.com/abetlen/llama-cpp-python"
repository = "https://github.com/abetlen/llama-cpp-python"
packages = [{include = "llama_cpp"}]
include = [
"LICENSE.md",
license = { text = "MIT" }
authors = [
{ name = "Andrei Betlen", email = "abetlen@gmail.com" },
]
dependencies = [
"typing-extensions>=4.5.0",
"numpy>=1.20.0",
"diskcache>=5.6.1",
]
requires-python = ">=3.8"
[project.optional-dependencies]
server = [
"uvicorn>=0.22.0",
"fastapi>=0.100.0",
"pydantic-settings>=2.0.1",
"sse-starlette>=1.6.1",
]
test = [
"pytest>=7.4.0",
"httpx>=0.24.1",
]
dev = [
"black>=23.3.0",
"twine>=4.0.2",
"mkdocs>=1.4.3",
"mkdocstrings[python]>=0.22.0",
"mkdocs-material>=9.1.18",
"pytest>=7.4.0",
"httpx>=0.24.1",
]
all = [
"llama_cpp_python[server,test,dev]",
]
[tool.poetry.dependencies]
python = "^3.8.1"
typing-extensions = "^4.7.1"
numpy = "^1.24.4"
diskcache = "^5.6.3"
uvicorn = { version = "^0.23.2", optional = true }
fastapi = { version = ">=0.100.0", optional = true }
sse-starlette = { version = ">=1.6.1", optional = true }
pydantic-settings = { version = ">=2.0.1", optional = true }
[tool.scikit-build]
wheel.packages = ["llama_cpp"]
cmake.verbose = true
cmake.minimum-version = "3.12"
minimum-version = "0.5"
ninja.make-fallback = false
[tool.poetry.group.dev.dependencies]
black = "^23.9.1"
twine = "^4.0.2"
mkdocs = "^1.5.2"
mkdocstrings = {extras = ["python"], version = "^0.23.0"}
mkdocs-material = "^9.3.1"
pytest = "^7.4.2"
httpx = "^0.25.0"
scikit-build = "0.17.6"
[tool.scikit-build.metadata.version]
provider = "scikit_build_core.metadata.regex"
input = "llama_cpp/__init__.py"
[tool.poetry.extras]
server = ["uvicorn", "fastapi", "pydantic-settings", "sse-starlette"]
[project.urls]
Homepage = "https://github.com/abetlen/llama-cpp-python"
Issues = "https://github.com/abetlen/llama-cpp-python/issues"
[tool.pytest.ini_options]
addopts = "--ignore=vendor"
[build-system]
requires = [
"setuptools>=42",
"scikit-build>=0.13",
"cmake>=3.18",
"ninja",
]
build-backend = "setuptools.build_meta"

View file

@ -1,35 +0,0 @@
from skbuild import setup
from pathlib import Path
this_directory = Path(__file__).parent
long_description = (this_directory / "README.md").read_text(encoding="utf-8")
exec(open('llama_cpp/version.py').read())
setup(
name="llama_cpp_python",
description="A Python wrapper for llama.cpp",
long_description=long_description,
long_description_content_type="text/markdown",
version=__version__,
author="Andrei Betlen",
author_email="abetlen@gmail.com",
license="MIT",
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
package_data={"llama_cpp": ["py.typed"]},
packages=["llama_cpp", "llama_cpp.server"],
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0", "diskcache>=5.6.1"],
extras_require={
"server": ["uvicorn>=0.22.0", "fastapi>=0.100.0", "pydantic-settings>=2.0.1", "sse-starlette>=1.6.1"],
},
python_requires=">=3.7",
classifiers=[
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
],
)