Use numpy arrays for logits_processors and stopping_criteria. Closes #491
This commit is contained in:
parent
5eab1db0d0
commit
19ba9d3845
2 changed files with 24 additions and 16 deletions
|
@ -27,6 +27,7 @@ from .llama_types import *
|
|||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
|
||||
class BaseLlamaCache(ABC):
|
||||
"""Base cache class for a llama.cpp model."""
|
||||
|
||||
|
@ -179,21 +180,27 @@ class LlamaState:
|
|||
self.llama_state_size = llama_state_size
|
||||
|
||||
|
||||
LogitsProcessor = Callable[[List[int], List[float]], List[float]]
|
||||
LogitsProcessor = Callable[
|
||||
[npt.NDArray[np.intc], npt.NDArray[np.single]], npt.NDArray[np.single]
|
||||
]
|
||||
|
||||
|
||||
class LogitsProcessorList(List[LogitsProcessor]):
|
||||
def __call__(self, input_ids: List[int], scores: List[float]) -> List[float]:
|
||||
def __call__(
|
||||
self, input_ids: npt.NDArray[np.intc], scores: npt.NDArray[np.single]
|
||||
) -> npt.NDArray[np.single]:
|
||||
for processor in self:
|
||||
scores = processor(input_ids, scores)
|
||||
return scores
|
||||
|
||||
|
||||
StoppingCriteria = Callable[[List[int], List[float]], bool]
|
||||
StoppingCriteria = Callable[[npt.NDArray[np.intc], npt.NDArray[np.single]], bool]
|
||||
|
||||
|
||||
class StoppingCriteriaList(List[StoppingCriteria]):
|
||||
def __call__(self, input_ids: List[int], logits: List[float]) -> bool:
|
||||
def __call__(
|
||||
self, input_ids: npt.NDArray[np.intc], logits: npt.NDArray[np.single]
|
||||
) -> bool:
|
||||
return any([stopping_criteria(input_ids, logits) for stopping_criteria in self])
|
||||
|
||||
|
||||
|
@ -274,9 +281,11 @@ class Llama:
|
|||
self._c_tensor_split = None
|
||||
|
||||
if self.tensor_split is not None:
|
||||
#Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
|
||||
# Type conversion and expand the list to the length of LLAMA_MAX_DEVICES
|
||||
FloatArray = ctypes.c_float * llama_cpp.LLAMA_MAX_DEVICES.value
|
||||
self._c_tensor_split = FloatArray(*tensor_split) # keep a reference to the array so it is not gc'd
|
||||
self._c_tensor_split = FloatArray(
|
||||
*tensor_split
|
||||
) # keep a reference to the array so it is not gc'd
|
||||
self.params.tensor_split = self._c_tensor_split
|
||||
|
||||
self.params.rope_freq_base = rope_freq_base
|
||||
|
@ -503,11 +512,7 @@ class Llama:
|
|||
logits: npt.NDArray[np.single] = self._scores[-1, :]
|
||||
|
||||
if logits_processor is not None:
|
||||
logits = np.array(
|
||||
logits_processor(self._input_ids.tolist(), logits.tolist()),
|
||||
dtype=np.single,
|
||||
)
|
||||
self._scores[-1, :] = logits
|
||||
logits[:] = logits_processor(self._input_ids, logits)
|
||||
|
||||
nl_logit = logits[self._token_nl]
|
||||
candidates = self._candidates
|
||||
|
@ -725,7 +730,7 @@ class Llama:
|
|||
logits_processor=logits_processor,
|
||||
)
|
||||
if stopping_criteria is not None and stopping_criteria(
|
||||
self._input_ids.tolist(), self._scores[-1, :].tolist()
|
||||
self._input_ids, self._scores[-1, :]
|
||||
):
|
||||
return
|
||||
tokens_or_none = yield token
|
||||
|
@ -1014,7 +1019,7 @@ class Llama:
|
|||
break
|
||||
|
||||
if stopping_criteria is not None and stopping_criteria(
|
||||
self._input_ids.tolist(), self._scores[-1, :].tolist()
|
||||
self._input_ids, self._scores[-1, :]
|
||||
):
|
||||
text = self.detokenize(completion_tokens)
|
||||
finish_reason = "stop"
|
||||
|
|
|
@ -16,6 +16,9 @@ from pydantic import BaseModel, Field
|
|||
from pydantic_settings import BaseSettings
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
model: str = Field(
|
||||
|
@ -336,9 +339,9 @@ def make_logit_bias_processor(
|
|||
to_bias[input_id] = score
|
||||
|
||||
def logit_bias_processor(
|
||||
input_ids: List[int],
|
||||
scores: List[float],
|
||||
) -> List[float]:
|
||||
input_ids: npt.NDArray[np.intc],
|
||||
scores: npt.NDArray[np.single],
|
||||
) -> npt.NDArray[np.single]:
|
||||
new_scores = [None] * len(scores)
|
||||
for input_id, score in enumerate(scores):
|
||||
new_scores[input_id] = score + to_bias.get(input_id, 0.0)
|
||||
|
|
Loading…
Reference in a new issue