Merge pull request #289 from Maximilian-Winter/main
Diskcache implementation for llama state.
This commit is contained in:
commit
0f0b447fa4
3 changed files with 265 additions and 191 deletions
|
@ -4,6 +4,7 @@ import uuid
|
|||
import time
|
||||
import math
|
||||
import multiprocessing
|
||||
from abc import ABC
|
||||
from typing import (
|
||||
List,
|
||||
Optional,
|
||||
|
@ -17,6 +18,8 @@ from typing import (
|
|||
)
|
||||
from collections import deque, OrderedDict
|
||||
|
||||
import diskcache
|
||||
|
||||
from . import llama_cpp
|
||||
from .llama_types import *
|
||||
|
||||
|
@ -24,12 +27,39 @@ import numpy as np
|
|||
import numpy.typing as npt
|
||||
|
||||
|
||||
class LlamaCache:
|
||||
"""Cache for a llama.cpp model."""
|
||||
class LlamaCache(ABC):
|
||||
"""Base cache class for a llama.cpp model."""
|
||||
|
||||
def __init__(self, capacity_bytes: int = (2 << 30)):
|
||||
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
||||
pass
|
||||
|
||||
@property
|
||||
def cache_size(self):
|
||||
return 0
|
||||
|
||||
def _find_longest_prefix_key(
|
||||
self,
|
||||
key: Tuple[int, ...],
|
||||
) -> Optional[Tuple[int, ...]]:
|
||||
pass
|
||||
|
||||
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
||||
pass
|
||||
|
||||
def __contains__(self, key: Sequence[int]) -> bool:
|
||||
pass
|
||||
|
||||
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
||||
pass
|
||||
|
||||
|
||||
class LlamaRAMCache(LlamaCache):
|
||||
"""Cache for a llama.cpp model using RAM."""
|
||||
|
||||
def __init__(self, capacity_bytes: int = (2 << 30)):
|
||||
super().__init__(capacity_bytes)
|
||||
self.capacity_bytes = capacity_bytes
|
||||
self.cache_state: OrderedDict[Tuple[int, ...], "LlamaState"] = OrderedDict()
|
||||
|
||||
@property
|
||||
def cache_size(self):
|
||||
|
@ -54,7 +84,7 @@ class LlamaCache:
|
|||
key = tuple(key)
|
||||
_key = self._find_longest_prefix_key(key)
|
||||
if _key is None:
|
||||
raise KeyError(f"Key not found")
|
||||
raise KeyError("Key not found")
|
||||
value = self.cache_state[_key]
|
||||
self.cache_state.move_to_end(_key)
|
||||
return value
|
||||
|
@ -71,6 +101,49 @@ class LlamaCache:
|
|||
self.cache_state.popitem(last=False)
|
||||
|
||||
|
||||
class LlamaDiskCache(LlamaCache):
|
||||
"""Cache for a llama.cpp model using disk."""
|
||||
|
||||
def __init__(self, cache_dir="./llama_cache", capacity_bytes: int = (2 << 30)):
|
||||
super().__init__(capacity_bytes)
|
||||
self.cache = diskcache.Cache(cache_dir)
|
||||
|
||||
@property
|
||||
def cache_size(self):
|
||||
return self.cache.volume()
|
||||
|
||||
def _find_longest_prefix_key(
|
||||
self,
|
||||
key: Tuple[int, ...],
|
||||
) -> Optional[Tuple[int, ...]]:
|
||||
min_len = 0
|
||||
min_key = None
|
||||
for k in self.cache.iterkeys():
|
||||
prefix_len = Llama.longest_token_prefix(k, key)
|
||||
if prefix_len > min_len:
|
||||
min_len = prefix_len
|
||||
min_key = k
|
||||
return min_key
|
||||
|
||||
def __getitem__(self, key: Sequence[int]) -> "LlamaState":
|
||||
key = tuple(key)
|
||||
_key = self._find_longest_prefix_key(key)
|
||||
if _key is None:
|
||||
raise KeyError("Key not found")
|
||||
value = self.cache.pop(_key)
|
||||
self.cache.push(_key)
|
||||
return value
|
||||
|
||||
def __setitem__(self, key: Sequence[int], value: "LlamaState"):
|
||||
key = tuple(key)
|
||||
if key in self.cache:
|
||||
del self.cache[key]
|
||||
self.cache[key] = value
|
||||
while self.cache_size > self.capacity_bytes:
|
||||
key_to_remove = next(iter(self.cache))
|
||||
del self.cache[key_to_remove]
|
||||
|
||||
|
||||
class LlamaState:
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -314,7 +387,7 @@ class Llama:
|
|||
assert self.ctx is not None
|
||||
n_ctx = self._n_ctx
|
||||
for i in range(0, len(tokens), self.n_batch):
|
||||
batch = tokens[i : min(len(tokens), i + self.n_batch)]
|
||||
batch = tokens[i: min(len(tokens), i + self.n_batch)]
|
||||
n_past = min(n_ctx - len(batch), len(self._input_ids))
|
||||
n_tokens = len(batch)
|
||||
return_code = llama_cpp.llama_eval(
|
||||
|
@ -336,7 +409,7 @@ class Llama:
|
|||
n_vocab = self._n_vocab
|
||||
cols = n_vocab
|
||||
logits_view = llama_cpp.llama_get_logits(self.ctx)
|
||||
logits = [logits_view[i * cols : (i + 1) * cols] for i in range(rows)]
|
||||
logits = [logits_view[i * cols: (i + 1) * cols] for i in range(rows)]
|
||||
self.eval_logits.extend(logits)
|
||||
self._scores: npt.NDArray[np.single] = np.concatenate(
|
||||
(self._scores, np.array(logits, dtype=np.single)), axis=0
|
||||
|
@ -505,7 +578,7 @@ class Llama:
|
|||
assert self.ctx is not None
|
||||
last_n_tokens_data = [llama_cpp.llama_token(0)] * max(
|
||||
0, self.last_n_tokens_size - len(self._input_ids)
|
||||
) + self._input_ids[-self.last_n_tokens_size :].tolist()
|
||||
) + self._input_ids[-self.last_n_tokens_size:].tolist()
|
||||
return self._sample(
|
||||
last_n_tokens_data=(llama_cpp.llama_token * self.last_n_tokens_size)(
|
||||
*last_n_tokens_data
|
||||
|
|
|
@ -16,6 +16,7 @@ include = [
|
|||
python = "^3.8.1"
|
||||
typing-extensions = "^4.6.3"
|
||||
numpy = "^1.20.0"
|
||||
diskcache = "^5.6.1"
|
||||
uvicorn = { version = "^0.22.0", optional = true }
|
||||
fastapi = { version = "^0.96.0", optional = true }
|
||||
sse-starlette = { version = "^1.6.1", optional = true }
|
||||
|
|
2
setup.py
2
setup.py
|
@ -16,7 +16,7 @@ setup(
|
|||
license="MIT",
|
||||
package_dir={"llama_cpp": "llama_cpp", "llama_cpp.server": "llama_cpp/server"},
|
||||
packages=["llama_cpp", "llama_cpp.server"],
|
||||
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0"],
|
||||
install_requires=["typing-extensions>=4.5.0", "numpy>=1.20.0", "diskcache>=5.6.1"],
|
||||
extras_require={
|
||||
"server": ["uvicorn>=0.21.1", "fastapi>=0.95.0", "sse-starlette>=1.3.3"],
|
||||
},
|
||||
|
|
Loading…
Reference in a new issue