Add offload_kqv option to llama and server
This commit is contained in:
parent
472b344ae3
commit
095c650006
2 changed files with 7 additions and 0 deletions
|
@ -752,6 +752,7 @@ class Llama:
|
||||||
mul_mat_q: bool = True,
|
mul_mat_q: bool = True,
|
||||||
logits_all: bool = False,
|
logits_all: bool = False,
|
||||||
embedding: bool = False,
|
embedding: bool = False,
|
||||||
|
offload_kqv: bool = False,
|
||||||
# Sampling Params
|
# Sampling Params
|
||||||
last_n_tokens_size: int = 64,
|
last_n_tokens_size: int = 64,
|
||||||
# LoRA Params
|
# LoRA Params
|
||||||
|
@ -817,6 +818,7 @@ class Llama:
|
||||||
yarn_orig_ctx: YaRN original context size
|
yarn_orig_ctx: YaRN original context size
|
||||||
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
|
logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
|
||||||
embedding: Embedding mode only.
|
embedding: Embedding mode only.
|
||||||
|
offload_kqv: Offload K, Q, V to GPU.
|
||||||
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.
|
||||||
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
|
lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
|
||||||
lora_path: Path to a LoRA file to apply to the model.
|
lora_path: Path to a LoRA file to apply to the model.
|
||||||
|
@ -903,6 +905,7 @@ class Llama:
|
||||||
self.context_params.mul_mat_q = mul_mat_q
|
self.context_params.mul_mat_q = mul_mat_q
|
||||||
self.context_params.logits_all = logits_all
|
self.context_params.logits_all = logits_all
|
||||||
self.context_params.embedding = embedding
|
self.context_params.embedding = embedding
|
||||||
|
self.context_params.offload_kqv = offload_kqv
|
||||||
|
|
||||||
# Sampling Params
|
# Sampling Params
|
||||||
self.last_n_tokens_size = last_n_tokens_size
|
self.last_n_tokens_size = last_n_tokens_size
|
||||||
|
|
|
@ -100,6 +100,9 @@ class Settings(BaseSettings):
|
||||||
)
|
)
|
||||||
logits_all: bool = Field(default=True, description="Whether to return logits.")
|
logits_all: bool = Field(default=True, description="Whether to return logits.")
|
||||||
embedding: bool = Field(default=True, description="Whether to use embeddings.")
|
embedding: bool = Field(default=True, description="Whether to use embeddings.")
|
||||||
|
offload_kqv: bool = Field(
|
||||||
|
default=False, description="Whether to offload kqv to the GPU."
|
||||||
|
)
|
||||||
# Sampling Params
|
# Sampling Params
|
||||||
last_n_tokens_size: int = Field(
|
last_n_tokens_size: int = Field(
|
||||||
default=64,
|
default=64,
|
||||||
|
@ -409,6 +412,7 @@ def create_app(settings: Optional[Settings] = None):
|
||||||
mul_mat_q=settings.mul_mat_q,
|
mul_mat_q=settings.mul_mat_q,
|
||||||
logits_all=settings.logits_all,
|
logits_all=settings.logits_all,
|
||||||
embedding=settings.embedding,
|
embedding=settings.embedding,
|
||||||
|
offload_kqv=settings.offload_kqv,
|
||||||
# Sampling Params
|
# Sampling Params
|
||||||
last_n_tokens_size=settings.last_n_tokens_size,
|
last_n_tokens_size=settings.last_n_tokens_size,
|
||||||
# LoRA Params
|
# LoRA Params
|
||||||
|
|
Loading…
Reference in a new issue