llama.cpp/examples/low_level_api_llama_cpp.py

86 lines
2.1 KiB
Python
Raw Normal View History

import llama_cpp
import multiprocessing
import llama_cpp
N_THREADS = multiprocessing.cpu_count()
prompt = b"\n\n### Instruction:\nWhat is the capital of France?\n\n### Response:\n"
lparams = llama_cpp.llama_context_default_params()
ctx = llama_cpp.llama_init_from_file(b"models/ggml-alpaca-7b-q4.bin", lparams)
# determine the required inference memory per token:
tmp = [0, 1, 2, 3]
llama_cpp.llama_eval(ctx, (llama_cpp.c_int * len(tmp))(*tmp), len(tmp), 0, N_THREADS)
n_past = 0
prompt = b" " + prompt
embd_inp = (llama_cpp.llama_token * (len(prompt) + 1))()
n_of_tok = llama_cpp.llama_tokenize(ctx, prompt, embd_inp, len(embd_inp), True)
embd_inp = embd_inp[:n_of_tok]
n_ctx = llama_cpp.llama_n_ctx(ctx)
n_predict = 20
n_predict = min(n_predict, n_ctx - len(embd_inp))
input_consumed = 0
input_noecho = False
remaining_tokens = n_predict
embd = []
last_n_size = 64
last_n_tokens = [0] * last_n_size
n_batch = 24
while remaining_tokens > 0:
if len(embd) > 0:
llama_cpp.llama_eval(
ctx, (llama_cpp.c_int * len(embd))(*embd), len(embd), n_past, N_THREADS
)
n_past += len(embd)
embd = []
if len(embd_inp) <= input_consumed:
id = llama_cpp.llama_sample_top_p_top_k(
ctx,
(llama_cpp.c_int * len(last_n_tokens))(*last_n_tokens),
len(last_n_tokens),
40,
0.8,
0.2,
1.0 / 0.85,
)
last_n_tokens = last_n_tokens[1:] + [id]
embd.append(id)
input_noecho = False
remaining_tokens -= 1
else:
while len(embd_inp) > input_consumed:
embd.append(embd_inp[input_consumed])
last_n_tokens = last_n_tokens[1:] + [embd_inp[input_consumed]]
input_consumed += 1
if len(embd) >= n_batch:
break
if not input_noecho:
for id in embd:
print(
llama_cpp.llama_token_to_str(ctx, id).decode("utf-8"),
end="",
flush=True,
)
if len(embd) > 0 and embd[-1] == llama_cpp.llama_token_eos():
break
print()
llama_cpp.llama_print_timings(ctx)
llama_cpp.llama_free(ctx)