llama.cpp/docs/server.md

124 lines
3.6 KiB
Markdown
Raw Normal View History

# OpenAI Compatible Server
`llama-cpp-python` offers an OpenAI API compatible web server.
This web server can be used to serve local models and easily connect them to existing clients.
## Setup
### Installation
The server can be installed by running the following command:
```bash
pip install llama-cpp-python[server]
```
### Running the server
The server can then be started by running the following command:
```bash
python3 -m llama_cpp.server --model <model_path>
```
### Server options
For a full list of options, run:
```bash
python3 -m llama_cpp.server --help
```
NOTE: All server options are also available as environment variables. For example, `--model` can be set by setting the `MODEL` environment variable.
## Guides
2023-11-10 04:06:14 -05:00
### Code Completion
`llama-cpp-python` supports code completion via GitHub Copilot.
*NOTE*: Without GPU acceleration this is unlikely to be fast enough to be usable.
You'll first need to download one of the available code completion models in GGUF format:
- [replit-code-v1_5-GGUF](https://huggingface.co/abetlen/replit-code-v1_5-3b-GGUF)
Then you'll need to run the OpenAI compatible web server with a increased context size substantially for GitHub Copilot requests:
```bash
python3 -m llama_cpp.server --model <model_path> --n_ctx 16192
```
Then just update your settings in `.vscode/settings.json` to point to your code completion server:
```json
{
// ...
"github.copilot.advanced": {
"debug.testOverrideProxyUrl": "http://<host>:<port>",
"debug.overrideProxyUrl": "http://<host>:<port>"
}
// ...
}
```
2023-11-08 00:52:13 -05:00
### Function Calling
`llama-cpp-python` supports structured function calling based on a JSON schema.
2023-11-24 00:17:54 -05:00
Function calling is completely compatible with the OpenAI function calling API and can be used by connecting with the official OpenAI Python client.
2023-11-08 00:52:13 -05:00
You'll first need to download one of the available function calling models in GGUF format:
- [functionary-7b-v1](https://huggingface.co/abetlen/functionary-7b-v1-GGUF)
2023-11-24 00:17:54 -05:00
Then when you run the server you'll need to also specify the `functionary` chat_format
2023-11-08 00:52:13 -05:00
```bash
2023-11-08 23:53:00 -05:00
python3 -m llama_cpp.server --model <model_path> --chat_format functionary
2023-11-08 00:52:13 -05:00
```
2023-11-24 00:18:32 -05:00
Check out this [example notebook](https://github.com/abetlen/llama-cpp-python/blob/main/examples/notebooks/Functions.ipynb) for a walkthrough of some interesting use cases for function calling.
2023-11-08 00:52:13 -05:00
### Multimodal Models
`llama-cpp-python` supports the llava1.5 family of multi-modal models which allow the language model to
read information from both text and images.
You'll first need to download one of the available multi-modal models in GGUF format:
2023-11-08 00:52:13 -05:00
- [llava-v1.5-7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
- [llava-v1.5-13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
2023-11-09 03:05:18 -05:00
- [bakllava-1-7b](https://huggingface.co/mys/ggml_bakllava-1)
2023-11-07 22:52:08 -05:00
Then when you run the server you'll need to also specify the path to the clip model used for image embedding and the `llava-1-5` chat_format
```bash
2023-11-08 23:53:00 -05:00
python3 -m llama_cpp.server --model <model_path> --clip_model_path <clip_model_path> --chat_format llava-1-5
```
Then you can just use the OpenAI API as normal
```python3
from openai import OpenAI
client = OpenAI(base_url="http://<host>:<port>/v1", api_key="sk-xxx")
response = client.chat.completions.create(
model="gpt-4-vision-preview",
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "<image_url>"
},
},
{"type": "text", "text": "What does the image say"},
],
}
],
)
print(response)
```