llama.cpp/README.md

174 lines
6.8 KiB
Markdown
Raw Normal View History

2023-03-24 00:06:24 -04:00
# 🦙 Python Bindings for `llama.cpp`
2023-03-27 18:30:12 -04:00
[![Documentation](https://img.shields.io/badge/docs-passing-green.svg)](https://abetlen.github.io/llama-cpp-python)
[![Tests](https://github.com/abetlen/llama-cpp-python/actions/workflows/test.yaml/badge.svg?branch=main)](https://github.com/abetlen/llama-cpp-python/actions/workflows/test.yaml)
2023-03-24 00:06:24 -04:00
[![PyPI](https://img.shields.io/pypi/v/llama-cpp-python)](https://pypi.org/project/llama-cpp-python/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/llama-cpp-python)](https://pypi.org/project/llama-cpp-python/)
[![PyPI - License](https://img.shields.io/pypi/l/llama-cpp-python)](https://pypi.org/project/llama-cpp-python/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/llama-cpp-python)](https://pypi.org/project/llama-cpp-python/)
2023-03-23 05:33:06 -04:00
2023-03-23 23:55:42 -04:00
Simple Python bindings for **@ggerganov's** [`llama.cpp`](https://github.com/ggerganov/llama.cpp) library.
2023-03-23 16:00:10 -04:00
This package provides:
2023-03-23 05:33:06 -04:00
2023-03-23 23:55:42 -04:00
- Low-level access to C API via `ctypes` interface.
- High-level Python API for text completion
- OpenAI-like API
2023-03-24 00:06:24 -04:00
- LangChain compatibility
2023-05-17 11:40:12 -04:00
Documentation is available at [https://abetlen.github.io/llama-cpp-python](https://abetlen.github.io/llama-cpp-python).
2023-05-07 05:20:04 -04:00
## Installation from PyPI (recommended)
2023-03-23 05:33:06 -04:00
2023-04-28 17:12:03 -04:00
Install from PyPI (requires a c compiler):
2023-03-23 05:33:06 -04:00
```bash
2023-03-23 14:24:34 -04:00
pip install llama-cpp-python
2023-03-23 05:33:06 -04:00
```
2023-04-28 17:08:18 -04:00
The above command will attempt to install the package and build build `llama.cpp` from source.
This is the recommended installation method as it ensures that `llama.cpp` is built with the available optimizations for your system.
2023-05-19 02:20:41 -04:00
If you have previously installed `llama-cpp-python` through pip and want to upgrade your version or rebuild the package with different compiler options, please add the following flags to ensure that the package is rebuilt correctly:
```bash
pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir
```
Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example:
```
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
bash Miniforge3-MacOSX-arm64.sh
```
Otherwise, while installing it will build the llama.ccp x86 version which will be 10x slower on Apple Silicon (M1) Mac.
2023-05-07 05:20:04 -04:00
### Installation with OpenBLAS / cuBLAS / CLBlast
`llama.cpp` supports multiple BLAS backends for faster processing.
Use the `FORCE_CMAKE=1` environment variable to force the use of `cmake` and install the pip package for the desired BLAS backend.
To install with OpenBLAS, set the `LLAMA_OPENBLAS=1` environment variable before installing:
```bash
CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
2023-05-07 05:20:04 -04:00
```
To install with cuBLAS, set the `LLAMA_CUBLAS=1` environment variable before installing:
```bash
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
2023-05-07 05:20:04 -04:00
```
To install with CLBlast, set the `LLAMA_CLBLAST=1` environment variable before installing:
```bash
CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python
2023-05-07 05:20:04 -04:00
```
2023-04-28 17:08:18 -04:00
2023-04-05 17:44:25 -04:00
## High-level API
2023-03-23 05:33:06 -04:00
2023-05-07 01:41:19 -04:00
The high-level API provides a simple managed interface through the `Llama` class.
Below is a short example demonstrating how to use the high-level API to generate text:
2023-03-23 05:33:06 -04:00
```python
>>> from llama_cpp import Llama
>>> llm = Llama(model_path="./models/7B/ggml-model.bin")
2023-03-23 05:33:06 -04:00
>>> output = llm("Q: Name the planets in the solar system? A: ", max_tokens=32, stop=["Q:", "\n"], echo=True)
>>> print(output)
{
"id": "cmpl-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"object": "text_completion",
"created": 1679561337,
"model": "./models/7B/ggml-model.bin",
2023-03-23 05:33:06 -04:00
"choices": [
{
"text": "Q: Name the planets in the solar system? A: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.",
"index": 0,
"logprobs": None,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 14,
"completion_tokens": 28,
"total_tokens": 42
}
}
```
2023-03-24 00:06:24 -04:00
2023-04-05 17:44:25 -04:00
## Web Server
`llama-cpp-python` offers a web server which aims to act as a drop-in replacement for the OpenAI API.
This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc).
To install the server package and get started:
```bash
pip install llama-cpp-python[server]
python3 -m llama_cpp.server --model models/7B/ggml-model.bin
```
2023-04-05 17:44:25 -04:00
Navigate to [http://localhost:8000/docs](http://localhost:8000/docs) to see the OpenAPI documentation.
2023-04-12 11:53:39 +02:00
## Docker image
A Docker image is available on [GHCR](https://ghcr.io/abetlen/llama-cpp-python). To run the server:
```bash
2023-05-11 22:12:35 -04:00
docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/ggml-model-name.bin ghcr.io/abetlen/llama-cpp-python:latest
2023-04-12 11:53:39 +02:00
```
2023-04-05 17:44:25 -04:00
## Low-level API
2023-05-07 01:41:19 -04:00
The low-level API is a direct [`ctypes`](https://docs.python.org/3/library/ctypes.html) binding to the C API provided by `llama.cpp`.
The entire lowe-level API can be found in [llama_cpp/llama_cpp.py](https://github.com/abetlen/llama-cpp-python/blob/master/llama_cpp/llama_cpp.py) and directly mirrors the C API in [llama.h](https://github.com/ggerganov/llama.cpp/blob/master/llama.h).
Below is a short example demonstrating how to use the low-level API to tokenize a prompt:
```python
>>> import llama_cpp
>>> import ctypes
>>> params = llama_cpp.llama_context_default_params()
# use bytes for char * params
>>> ctx = llama_cpp.llama_init_from_file(b"./models/7b/ggml-model.bin", params)
>>> max_tokens = params.n_ctx
# use ctypes arrays for array params
2023-05-15 14:52:25 -07:00
>>> tokens = (llama_cpp.llama_token * int(max_tokens))()
2023-05-07 01:41:19 -04:00
>>> n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True))
>>> llama_cpp.llama_free(ctx)
```
Check out the [examples folder](examples/low_level_api) for more examples of using the low-level API.
2023-04-05 17:44:25 -04:00
2023-04-02 21:03:39 -04:00
# Documentation
Documentation is available at [https://abetlen.github.io/llama-cpp-python](https://abetlen.github.io/llama-cpp-python).
If you find any issues with the documentation, please open an issue or submit a PR.
# Development
This package is under active development and I welcome any contributions.
To get started, clone the repository and install the package in development mode:
```bash
2023-05-01 18:07:45 -04:00
git clone --recurse-submodules git@github.com:abetlen/llama-cpp-python.git
2023-04-02 21:03:39 -04:00
# Will need to be re-run any time vendor/llama.cpp is updated
python3 setup.py develop
```
# How does this compare to other Python bindings of `llama.cpp`?
2023-04-04 10:57:22 -04:00
I originally wrote this package for my own use with two goals in mind:
2023-04-02 21:03:39 -04:00
- Provide a simple process to install `llama.cpp` and access the full C API in `llama.h` from Python
- Provide a high-level Python API that can be used as a drop-in replacement for the OpenAI API so existing apps can be easily ported to use `llama.cpp`
Any contributions and changes to this package will be made with these goals in mind.
2023-03-24 00:06:24 -04:00
# License
This project is licensed under the terms of the MIT license.