96 lines
3 KiB
Python
96 lines
3 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import abc
|
||
|
from typing import (
|
||
|
List,
|
||
|
Optional,
|
||
|
Any,
|
||
|
)
|
||
|
|
||
|
import llama_cpp
|
||
|
from llama_cpp.llama_types import List
|
||
|
|
||
|
|
||
|
class BaseLlamaTokenizer(abc.ABC):
|
||
|
@abc.abstractmethod
|
||
|
def tokenize(
|
||
|
self, text: bytes, add_bos: bool = True, special: bool = True
|
||
|
) -> List[int]:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@abc.abstractmethod
|
||
|
def detokenize(
|
||
|
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
|
||
|
) -> bytes:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
class LlamaTokenizer(BaseLlamaTokenizer):
|
||
|
def __init__(self, llama: llama_cpp.Llama):
|
||
|
self._model = llama._model # type: ignore
|
||
|
|
||
|
def tokenize(
|
||
|
self, text: bytes, add_bos: bool = True, special: bool = True
|
||
|
) -> List[int]:
|
||
|
return self._model.tokenize(text, add_bos=add_bos, special=special)
|
||
|
|
||
|
def detokenize(
|
||
|
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
|
||
|
) -> bytes:
|
||
|
if prev_tokens is not None:
|
||
|
return self._model.detokenize(tokens[len(prev_tokens) :])
|
||
|
else:
|
||
|
return self._model.detokenize(tokens)
|
||
|
|
||
|
def encode(
|
||
|
self, text: str, add_bos: bool = True, special: bool = True
|
||
|
) -> List[int]:
|
||
|
return self.tokenize(
|
||
|
text.encode("utf-8", errors="ignore"), add_bos=add_bos, special=special
|
||
|
)
|
||
|
|
||
|
def decode(self, tokens: List[int]) -> str:
|
||
|
return self.detokenize(tokens).decode("utf-8", errors="ignore")
|
||
|
|
||
|
@classmethod
|
||
|
def from_ggml_file(cls, path: str) -> "LlamaTokenizer":
|
||
|
return cls(llama_cpp.Llama(model_path=path, vocab_only=True))
|
||
|
|
||
|
|
||
|
class LlamaHFTokenizer(BaseLlamaTokenizer):
|
||
|
def __init__(self, hf_tokenizer: Any):
|
||
|
self.hf_tokenizer = hf_tokenizer
|
||
|
|
||
|
def tokenize(
|
||
|
self, text: bytes, add_bos: bool = True, special: bool = True
|
||
|
) -> List[int]:
|
||
|
return self.hf_tokenizer.encode(
|
||
|
text.decode("utf-8", errors="ignore"), add_special_tokens=special
|
||
|
)
|
||
|
|
||
|
def detokenize(
|
||
|
self, tokens: List[int], prev_tokens: Optional[List[int]] = None
|
||
|
) -> bytes:
|
||
|
if prev_tokens is not None:
|
||
|
text = self.hf_tokenizer.decode(tokens).encode("utf-8", errors="ignore")
|
||
|
prev_text = self.hf_tokenizer.decode(prev_tokens).encode(
|
||
|
"utf-8", errors="ignore"
|
||
|
)
|
||
|
return text[len(prev_text) :]
|
||
|
else:
|
||
|
return self.hf_tokenizer.decode(tokens).encode("utf-8", errors="ignore")
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: str) -> "LlamaHFTokenizer":
|
||
|
try:
|
||
|
from transformers import AutoTokenizer
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"The `transformers` library is required to use the `HFTokenizer`."
|
||
|
"You can install it with `pip install transformers`."
|
||
|
)
|
||
|
hf_tokenizer = AutoTokenizer.from_pretrained(
|
||
|
pretrained_model_name_or_path=pretrained_model_name_or_path
|
||
|
)
|
||
|
return cls(hf_tokenizer)
|