llama.cpp/examples/low_level_api/low_level_api_llama_cpp.py

130 lines
3.7 KiB
Python
Raw Normal View History

2023-09-07 17:50:47 -04:00
import ctypes
import os
import multiprocessing
import llama_cpp
llama_cpp.llama_backend_init(numa=False)
N_THREADS = multiprocessing.cpu_count()
2023-09-07 17:50:47 -04:00
MODEL_PATH = os.environ.get('MODEL', "../models/7B/ggml-model.bin")
prompt = b"\n\n### Instruction:\nWhat is the capital of France?\n\n### Response:\n"
2023-11-20 18:31:52 +01:00
lparams = llama_cpp.llama_model_default_params()
cparams = llama_cpp.llama_context_default_params()
2023-09-07 17:50:47 -04:00
model = llama_cpp.llama_load_model_from_file(MODEL_PATH.encode('utf-8'), lparams)
2023-11-20 18:31:52 +01:00
ctx = llama_cpp.llama_new_context_with_model(model, cparams)
# determine the required inference memory per token:
tmp = [0, 1, 2, 3]
2023-11-20 18:31:52 +01:00
llama_cpp.llama_eval(
ctx = ctx,
tokens=(llama_cpp.c_int * len(tmp))(*tmp),
n_tokens=len(tmp),
n_past=0
)# Deprecated
n_past = 0
prompt = b" " + prompt
embd_inp = (llama_cpp.llama_token * (len(prompt) + 1))()
2023-11-20 18:31:52 +01:00
n_of_tok = llama_cpp.llama_tokenize(
model=model,
text=bytes(str(prompt),'utf-8'),
text_len=len(embd_inp),
tokens=embd_inp,
n_max_tokens=len(embd_inp),
add_bos=False,
special=False
)
embd_inp = embd_inp[:n_of_tok]
n_ctx = llama_cpp.llama_n_ctx(ctx)
n_predict = 20
n_predict = min(n_predict, n_ctx - len(embd_inp))
input_consumed = 0
input_noecho = False
remaining_tokens = n_predict
embd = []
last_n_size = 64
2023-04-01 13:02:10 -04:00
last_n_tokens_data = [0] * last_n_size
n_batch = 24
2023-05-04 18:33:08 +02:00
last_n_repeat = 64
repeat_penalty = 1
frequency_penalty = 0.0
presence_penalty = 0.0
while remaining_tokens > 0:
if len(embd) > 0:
llama_cpp.llama_eval(
2023-11-20 18:31:52 +01:00
ctx = ctx,
tokens=(llama_cpp.c_int * len(embd))(*embd),
n_tokens=len(embd),
n_past=n_past
)# Deprecated
n_past += len(embd)
embd = []
if len(embd_inp) <= input_consumed:
2023-05-04 18:33:08 +02:00
logits = llama_cpp.llama_get_logits(ctx)
n_vocab = llama_cpp.llama_n_vocab(model)
2023-05-04 18:33:08 +02:00
_arr = (llama_cpp.llama_token_data * n_vocab)(*[
llama_cpp.llama_token_data(token_id, logits[token_id], 0.0)
for token_id in range(n_vocab)
])
2023-09-07 17:50:47 -04:00
candidates_p = llama_cpp.ctypes.pointer(
llama_cpp.llama_token_data_array(_arr, len(_arr), False))
2023-05-04 18:33:08 +02:00
_arr = (llama_cpp.c_int * len(last_n_tokens_data))(*last_n_tokens_data)
llama_cpp.llama_sample_repetition_penalties(ctx, candidates_p,
2023-05-04 18:33:08 +02:00
_arr,
penalty_last_n=last_n_repeat,
penalty_repeat=repeat_penalty,
penalty_freq=frequency_penalty,
penalty_present=presence_penalty)
2023-05-04 18:33:08 +02:00
2023-09-07 17:50:47 -04:00
llama_cpp.llama_sample_top_k(ctx, candidates_p, k=40, min_keep=1)
llama_cpp.llama_sample_top_p(ctx, candidates_p, p=0.8, min_keep=1)
llama_cpp.llama_sample_temperature(ctx, candidates_p, temp=0.2)
2023-05-04 18:33:08 +02:00
id = llama_cpp.llama_sample_token(ctx, candidates_p)
2023-04-01 13:02:10 -04:00
last_n_tokens_data = last_n_tokens_data[1:] + [id]
embd.append(id)
input_noecho = False
remaining_tokens -= 1
else:
while len(embd_inp) > input_consumed:
embd.append(embd_inp[input_consumed])
2023-04-01 13:02:10 -04:00
last_n_tokens_data = last_n_tokens_data[1:] + [embd_inp[input_consumed]]
input_consumed += 1
if len(embd) >= n_batch:
break
if not input_noecho:
for id in embd:
2023-09-07 17:50:47 -04:00
size = 32
buffer = (ctypes.c_char * size)()
2023-11-20 18:31:52 +01:00
n = llama_cpp.llama_token_to_piece(
2023-09-07 17:50:47 -04:00
model, llama_cpp.llama_token(id), buffer, size)
assert n <= size
print(
2023-09-07 17:50:47 -04:00
buffer[:n].decode('utf-8'),
end="",
flush=True,
)
2023-09-07 17:50:47 -04:00
if len(embd) > 0 and embd[-1] == llama_cpp.llama_token_eos(ctx):
break
print()
llama_cpp.llama_print_timings(ctx)
llama_cpp.llama_free(ctx)