2023-09-12 23:02:30 +00:00
# 🦙 Python Bindings for [`llama.cpp`](https://github.com/ggerganov/llama.cpp)
2023-03-24 04:06:24 +00:00
2023-06-26 20:35:38 +00:00
[![Documentation Status ](https://readthedocs.org/projects/llama-cpp-python/badge/?version=latest )](https://llama-cpp-python.readthedocs.io/en/latest/?badge=latest)
2023-04-05 08:41:24 +00:00
[![Tests ](https://github.com/abetlen/llama-cpp-python/actions/workflows/test.yaml/badge.svg?branch=main )](https://github.com/abetlen/llama-cpp-python/actions/workflows/test.yaml)
2023-03-24 04:06:24 +00:00
[![PyPI ](https://img.shields.io/pypi/v/llama-cpp-python )](https://pypi.org/project/llama-cpp-python/)
[![PyPI - Python Version ](https://img.shields.io/pypi/pyversions/llama-cpp-python )](https://pypi.org/project/llama-cpp-python/)
[![PyPI - License ](https://img.shields.io/pypi/l/llama-cpp-python )](https://pypi.org/project/llama-cpp-python/)
[![PyPI - Downloads ](https://img.shields.io/pypi/dm/llama-cpp-python )](https://pypi.org/project/llama-cpp-python/)
2023-03-23 09:33:06 +00:00
2023-03-24 03:55:42 +00:00
Simple Python bindings for ** @ggerganov 's** [`llama.cpp` ](https://github.com/ggerganov/llama.cpp ) library.
2023-03-23 20:00:10 +00:00
This package provides:
2023-03-23 09:33:06 +00:00
2023-03-24 03:55:42 +00:00
- Low-level access to C API via `ctypes` interface.
- High-level Python API for text completion
2023-11-22 23:04:18 +00:00
- OpenAI-like API
2023-11-22 23:17:49 +00:00
- [LangChain compatibility ](https://python.langchain.com/docs/integrations/llms/llamacpp )
2023-11-22 23:21:02 +00:00
- OpenAI compatible web server
- [Local Copilot replacement ](https://llama-cpp-python.readthedocs.io/en/latest/server/#code-completion )
- [Function Calling support ](https://llama-cpp-python.readthedocs.io/en/latest/server/#function-calling )
- [Vision API support ](https://llama-cpp-python.readthedocs.io/en/latest/server/#multimodal-models )
2023-03-24 04:06:24 +00:00
2023-06-26 20:35:38 +00:00
Documentation is available at [https://llama-cpp-python.readthedocs.io/en/latest ](https://llama-cpp-python.readthedocs.io/en/latest ).
2023-05-17 15:40:12 +00:00
2023-08-25 09:02:48 +00:00
2023-06-12 23:52:22 +00:00
2023-08-25 21:19:23 +00:00
## Installation from PyPI
2023-03-23 09:33:06 +00:00
2023-04-28 21:12:03 +00:00
Install from PyPI (requires a c compiler):
2023-03-23 09:33:06 +00:00
```bash
2023-03-23 18:24:34 +00:00
pip install llama-cpp-python
2023-03-23 09:33:06 +00:00
```
2023-06-13 05:56:05 +00:00
The above command will attempt to install the package and build `llama.cpp` from source.
2023-04-28 21:08:18 +00:00
This is the recommended installation method as it ensures that `llama.cpp` is built with the available optimizations for your system.
2023-05-19 06:20:41 +00:00
If you have previously installed `llama-cpp-python` through pip and want to upgrade your version or rebuild the package with different compiler options, please add the following flags to ensure that the package is rebuilt correctly:
```bash
pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir
```
2023-05-15 10:46:59 +00:00
Note: If you are using Apple Silicon (M1) Mac, make sure you have installed a version of Python that supports arm64 architecture. For example:
```
wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-MacOSX-arm64.sh
bash Miniforge3-MacOSX-arm64.sh
```
2023-11-26 20:39:38 +00:00
Otherwise, while installing it will build the llama.cpp x86 version which will be 10x slower on Apple Silicon (M1) Mac.
2023-05-07 09:20:04 +00:00
2023-08-25 21:19:23 +00:00
### Installation with Hardware Acceleration
2023-05-07 09:20:04 +00:00
`llama.cpp` supports multiple BLAS backends for faster processing.
2023-07-19 02:22:33 +00:00
To install with OpenBLAS, set the `LLAMA_BLAS and LLAMA_BLAS_VENDOR` environment variables before installing:
2023-05-07 09:20:04 +00:00
```bash
2023-09-13 03:56:10 +00:00
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
2023-05-07 09:20:04 +00:00
```
To install with cuBLAS, set the `LLAMA_CUBLAS=1` environment variable before installing:
```bash
2023-09-13 03:56:10 +00:00
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
2023-05-07 09:20:04 +00:00
```
To install with CLBlast, set the `LLAMA_CLBLAST=1` environment variable before installing:
```bash
2023-09-13 03:56:10 +00:00
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
2023-05-07 09:20:04 +00:00
```
2023-06-10 22:59:26 +00:00
To install with Metal (MPS), set the `LLAMA_METAL=on` environment variable before installing:
```bash
2023-09-13 03:56:10 +00:00
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
2023-06-10 22:59:26 +00:00
```
2023-04-28 21:08:18 +00:00
2023-08-25 21:19:23 +00:00
To install with hipBLAS / ROCm support for AMD cards, set the `LLAMA_HIPBLAS=on` environment variable before installing:
```bash
2023-09-13 03:56:10 +00:00
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
2023-08-25 21:19:23 +00:00
```
2023-07-18 21:14:42 +00:00
#### Windows remarks
2023-09-13 03:56:10 +00:00
To set the variables `CMAKE_ARGS` in PowerShell, follow the next steps (Example using, OpenBLAS):
2023-07-18 21:14:42 +00:00
```ps
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
```
Then, call `pip` after setting the variables:
```
pip install llama-cpp-python
```
2023-11-01 22:55:57 +00:00
If you run into issues where it complains it can't find `'nmake'` `'?'` or CMAKE_C_COMPILER, you can extract w64devkit as [mentioned in llama.cpp repo ](https://github.com/ggerganov/llama.cpp#openblas ) and add those manually to CMAKE_ARGS before running `pip` install:
```ps
$env:CMAKE_GENERATOR = "MinGW Makefiles"
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on -DCMAKE_C_COMPILER=C:/w64devkit/bin/gcc.exe -DCMAKE_CXX_COMPILER=C:/w64devkit/bin/g++.exe"
```
2023-07-18 21:14:42 +00:00
See the above instructions and set `CMAKE_ARGS` to the BLAS backend you want to use.
#### MacOS remarks
2023-11-22 23:07:30 +00:00
Detailed MacOS Metal GPU install documentation is available at [docs/install/macos.md ](https://llama-cpp-python.readthedocs.io/en/latest/install/macos/ )
2023-06-15 02:15:22 +00:00
2023-04-05 21:44:25 +00:00
## High-level API
2023-03-23 09:33:06 +00:00
2023-05-07 05:41:19 +00:00
The high-level API provides a simple managed interface through the `Llama` class.
2023-11-23 00:49:56 +00:00
Below is a short example demonstrating how to use the high-level API to for basic text completion:
2023-05-07 05:41:19 +00:00
2023-03-23 09:33:06 +00:00
```python
>>> from llama_cpp import Llama
2023-09-14 18:48:21 +00:00
>>> llm = Llama(model_path="./models/7B/llama-model.gguf")
2023-11-23 00:49:56 +00:00
>>> output = llm(
"Q: Name the planets in the solar system? A: ", # Prompt
max_tokens=32, # Generate up to 32 tokens
stop=["Q:", "\n"], # Stop generating just before the model would generate a new question
echo=True # Echo the prompt back in the output
)
2023-03-23 09:33:06 +00:00
>>> print(output)
{
"id": "cmpl-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
"object": "text_completion",
"created": 1679561337,
2023-09-14 18:48:21 +00:00
"model": "./models/7B/llama-model.gguf",
2023-03-23 09:33:06 +00:00
"choices": [
{
"text": "Q: Name the planets in the solar system? A: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.",
"index": 0,
"logprobs": None,
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 14,
"completion_tokens": 28,
"total_tokens": 42
}
}
```
2023-03-24 04:06:24 +00:00
2023-11-23 00:49:56 +00:00
### Chat Completion
The high-level API also provides a simple interface for chat completion.
Note that `chat_format` option must be set for the particular model you are using.
```python
>>> from llama_cpp import Llama
>>> llm = Llama(model_path="path/to/llama-2/llama-model.gguf", chat_format="llama-2")
>>> llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": "Describe this image in detail please."
}
]
)
```
### Function Calling
The high-level API also provides a simple interface for function calling.
Note that the only model that supports full function calling at this time is "functionary".
The gguf-converted files for this model can be found here: [functionary-7b-v1 ](https://huggingface.co/abetlen/functionary-7b-v1-GGUF )
```python
>>> from llama_cpp import Llama
>>> llm = Llama(model_path="path/to/functionary/llama-model.gguf", chat_format="functionary")
>>> llm.create_chat_completion(
messages = [
{
"role": "system",
"content": "A chat between a curious user and an artificial intelligence assitant. The assistant gives helpful, detailed, and polite answers to the user's questions. The assistant callse functions with appropriate input when necessary"
},
{
"role": "user",
"content": "Extract Jason is 25 years old"
}
],
tools=[{
"type": "function",
"function": {
"name": "UserDetail",
"parameters": {
"type": "object"
"title": "UserDetail",
"properties": {
"name": {
"title": "Name",
"type": "string"
},
"age": {
"title": "Age",
"type": "integer"
}
},
"required": [ "name", "age" ]
}
}
}],
tool_choices=[{
"type": "function",
"function": {
"name": "UserDetail"
}
}]
)
```
### Multi-modal Models
`llama-cpp-python` supports the llava1.5 family of multi-modal models which allow the language model to
read information from both text and images.
You'll first need to download one of the available multi-modal models in GGUF format:
- [llava-v1.5-7b ](https://huggingface.co/mys/ggml_llava-v1.5-7b )
- [llava-v1.5-13b ](https://huggingface.co/mys/ggml_llava-v1.5-13b )
- [bakllava-1-7b ](https://huggingface.co/mys/ggml_bakllava-1 )
Then you'll need to use a custom chat handler to load the clip model and process the chat messages and images.
```python
>>> from llama_cpp import Llama
>>> from llama_cpp.llama_chat_format import Llava15ChatHandler
>>> chat_handler = Llava15ChatHandler(clip_model_path="path/to/llava/mmproj.bin")
2023-11-23 02:07:00 +00:00
>>> llm = Llama(
model_path="./path/to/llava/llama-model.gguf",
chat_handler=chat_handler,
n_ctx=2048 # n_ctx should be increased to accomodate the image embedding
)
2023-11-23 00:49:56 +00:00
>>> llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are an assistant who perfectly describes images."},
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": "https://.../image.png"}},
{"type" : "text", "text": "Describe this image in detail please."}
]
}
]
)
```
2023-07-08 03:24:57 +00:00
### Adjusting the Context Window
2023-11-22 23:09:31 +00:00
2023-07-08 03:24:57 +00:00
The context window of the Llama models determines the maximum number of tokens that can be processed at once. By default, this is set to 512 tokens, but can be adjusted based on your requirements.
For instance, if you want to work with larger contexts, you can expand the context window by setting the n_ctx parameter when initializing the Llama object:
```python
2023-09-14 18:48:21 +00:00
llm = Llama(model_path="./models/7B/llama-model.gguf", n_ctx=2048)
2023-07-08 03:24:57 +00:00
```
2023-07-24 13:51:19 +00:00
2023-04-05 21:44:25 +00:00
## Web Server
`llama-cpp-python` offers a web server which aims to act as a drop-in replacement for the OpenAI API.
This allows you to use llama.cpp compatible models with any OpenAI compatible client (language libraries, services, etc).
To install the server package and get started:
```bash
pip install llama-cpp-python[server]
2023-09-14 18:48:21 +00:00
python3 -m llama_cpp.server --model models/7B/llama-model.gguf
```
2023-11-21 05:24:22 +00:00
2023-09-14 18:48:21 +00:00
Similar to Hardware Acceleration section above, you can also install with GPU (cuBLAS) support like this:
```bash
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python[server]
python3 -m llama_cpp.server --model models/7B/llama-model.gguf --n_gpu_layers 35
2023-05-05 12:21:57 +00:00
```
2023-04-05 21:44:25 +00:00
Navigate to [http://localhost:8000/docs ](http://localhost:8000/docs ) to see the OpenAPI documentation.
2023-11-21 05:24:22 +00:00
To bind to `0.0.0.0` to enable remote connections, use `python3 -m llama_cpp.server --host 0.0.0.0` .
Similarly, to change the port (default is 8000), use `--port` .
2023-09-14 18:48:21 +00:00
2023-11-22 11:10:03 +00:00
You probably also want to set the prompt format. For chatml, use
```bash
python3 -m llama_cpp.server --model models/7B/llama-model.gguf --chat_format chatml
```
That will format the prompt according to how model expects it. You can find the prompt format in the model card.
For possible options, see [llama_cpp/llama_chat_format.py ](llama_cpp/llama_chat_format.py ) and look for lines starting with "@register_chat_format".
2023-04-12 09:53:39 +00:00
## Docker image
A Docker image is available on [GHCR ](https://ghcr.io/abetlen/llama-cpp-python ). To run the server:
```bash
2023-09-14 18:48:21 +00:00
docker run --rm -it -p 8000:8000 -v /path/to/models:/models -e MODEL=/models/llama-model.gguf ghcr.io/abetlen/llama-cpp-python:latest
2023-04-12 09:53:39 +00:00
```
2023-06-17 09:20:07 +00:00
[Docker on termux (requires root) ](https://gist.github.com/FreddieOliveira/efe850df7ff3951cb62d74bd770dce27 ) is currently the only known way to run this on phones, see [termux support issue ](https://github.com/abetlen/llama-cpp-python/issues/389 )
2023-04-12 09:53:39 +00:00
2023-04-05 21:44:25 +00:00
## Low-level API
2023-05-07 05:41:19 +00:00
The low-level API is a direct [`ctypes` ](https://docs.python.org/3/library/ctypes.html ) binding to the C API provided by `llama.cpp` .
2023-08-05 07:00:04 +00:00
The entire low-level API can be found in [llama_cpp/llama_cpp.py ](https://github.com/abetlen/llama-cpp-python/blob/master/llama_cpp/llama_cpp.py ) and directly mirrors the C API in [llama.h ](https://github.com/ggerganov/llama.cpp/blob/master/llama.h ).
2023-05-07 05:41:19 +00:00
Below is a short example demonstrating how to use the low-level API to tokenize a prompt:
```python
>>> import llama_cpp
>>> import ctypes
2023-09-14 03:00:43 +00:00
>>> llama_cpp.llama_backend_init(numa=False) # Must be called once at the start of each program
2023-05-07 05:41:19 +00:00
>>> params = llama_cpp.llama_context_default_params()
# use bytes for char * params
2023-09-14 18:48:21 +00:00
>>> model = llama_cpp.llama_load_model_from_file(b"./models/7b/llama-model.gguf", params)
2023-09-07 21:50:47 +00:00
>>> ctx = llama_cpp.llama_new_context_with_model(model, params)
2023-05-07 05:41:19 +00:00
>>> max_tokens = params.n_ctx
# use ctypes arrays for array params
2023-05-15 21:52:25 +00:00
>>> tokens = (llama_cpp.llama_token * int(max_tokens))()
2023-05-07 05:41:19 +00:00
>>> n_tokens = llama_cpp.llama_tokenize(ctx, b"Q: Name the planets in the solar system? A: ", tokens, max_tokens, add_bos=llama_cpp.c_bool(True))
>>> llama_cpp.llama_free(ctx)
```
Check out the [examples folder ](examples/low_level_api ) for more examples of using the low-level API.
2023-04-05 21:44:25 +00:00
2023-04-03 01:03:39 +00:00
# Documentation
2023-11-27 23:21:00 +00:00
Documentation is available via [https://llama-cpp-python.readthedocs.io/ ](https://llama-cpp-python.readthedocs.io/ ).
2023-04-03 01:03:39 +00:00
If you find any issues with the documentation, please open an issue or submit a PR.
# Development
This package is under active development and I welcome any contributions.
2023-07-19 00:26:25 +00:00
To get started, clone the repository and install the package in editable / development mode:
2023-04-03 01:03:39 +00:00
```bash
2023-08-02 10:27:08 +00:00
git clone --recurse-submodules https://github.com/abetlen/llama-cpp-python.git
2023-06-30 08:42:13 +00:00
cd llama-cpp-python
2023-05-01 06:28:50 +00:00
2023-07-19 00:26:25 +00:00
# Upgrade pip (required for editable mode)
pip install --upgrade pip
2023-05-01 06:28:50 +00:00
# Install with pip
pip install -e .
# if you want to use the fastapi / openapi server
pip install -e .[server]
2023-07-19 00:26:25 +00:00
# to install all optional dependencies
pip install -e .[all]
# to clear the local build cache
make clean
2023-04-03 01:03:39 +00:00
```
# How does this compare to other Python bindings of `llama.cpp`?
2023-04-04 14:57:22 +00:00
I originally wrote this package for my own use with two goals in mind:
2023-04-03 01:03:39 +00:00
- Provide a simple process to install `llama.cpp` and access the full C API in `llama.h` from Python
- Provide a high-level Python API that can be used as a drop-in replacement for the OpenAI API so existing apps can be easily ported to use `llama.cpp`
Any contributions and changes to this package will be made with these goals in mind.
2023-03-24 04:06:24 +00:00
# License
This project is licensed under the terms of the MIT license.